2020届江苏省无锡市天一中学高三第一次模拟考试数学试题(解析版)
展开2020届江苏省无锡市天一中学高三第一次模拟考试数学试题
一、填空题
1.已知集合,,则_________.
【答案】
【解析】根据交集的定义即可写出答案。
【详解】
,,
故填
【点睛】
本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。
2.复数为虚数单位)的虚部为__________.
【答案】1
【解析】试题分析:,即虚部为1,故填:1.
【考点】复数的代数运算
3.函数的定义域是 .
【答案】
【解析】解:因为,故定义域为
4.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为________.
【答案】
【解析】先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.
【详解】
一次随机抽取其中的三张,所有基本事件为:
1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,
其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,
因此“抽取的三张卡片编号之和是偶数”的概率为:.
故答案为:.
【点睛】
本题考查了古典概型及其概率计算公式,属于基础题.
5.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.
【答案】
【解析】利用,解出,即可求出双曲线的渐近线方程.
【详解】
,且,,
,
该双曲线的渐近线方程为:.
故答案为:.
【点睛】
本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.
6.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.
【答案】
【解析】设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.
【详解】
设圆柱的高为,底面半径为.
∵该圆柱形的如罐的容积为个立方单位
∴,即.
∴该圆柱形的表面积为.
令,则.
令,得;
令,得.
∴在上单调递减,在上单调递增.
∴当时,取得最小值,即材料最省,此时.
故答案为:.
【点睛】
本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.
7.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.
【答案】
【解析】求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.
【详解】
双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.
由题意得,解得.
故答案为:.
【点睛】
本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.
8.已知是第二象限角,且,,则____.
【答案】
【解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.
【详解】
解:由是第二象限角,且,可得,,
由,可得,代入,
可得,
故答案为:.
【点睛】
本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.
9.已知等差数列的前n项和为Sn,若,则____.
【答案】
【解析】由,,成等差数列,代入可得的值.
【详解】
解:由等差数列的性质可得:,,成等差数列,
可得:,代入,
可得:,
故答案为:.
【点睛】
本题主要考查等差数列前n项和的性质,相对不难.
10.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.
【答案】3
【解析】当时,得,或,依题意可得,可求得,继而可得答案.
【详解】
因为点的横坐标为1,即当时,,
所以或,
又直线与函数的图象在轴右侧的公共点从左到右依次为,,
所以,
故,
所以函数的关系式为.
当时,(3),
即点的横坐标为3,为二函数的图象的第二个公共点.
故答案为:3.
【点睛】
本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.
11.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.
【答案】
【解析】设
根据椭圆的几何性质可得
,
根据双曲线的几何性质可得,
,
即
故答案为
12.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.
【答案】
【解析】过点做,可得,,由可得,可得,代入可得答案.
【详解】
解:如图,过点做,
易得:,,
,故,可得:,
同理:,,可得,
,
由,可得,
可得:,可得:,
,
故答案为:.
【点睛】
本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.
13.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.
【答案】
【解析】先推导出函数的周期为,可得出,代值计算,即可求出实数的值.
【详解】
由于函数是定义在上的奇函数,则,
又该函数的图象关于直线对称,则,
所以,,则,
所以,函数是周期为的周期函数,
所以,解得.
故答案为:.
【点睛】
本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.
14.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.
【答案】
【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.
【详解】
当时,令,解得,
所以当时,,则单调递增,当时,,则单调递减,
当时,单调递减,且,
作出函数的图象如图:
(1)当时,方程整理得,只有2个根,不满足条件;
(2)若,则当时,方程整理得,
则,,此时各有1解,
故当时,方程整理得,
有1解同时有2解,即需,,因为(2),故此时满足题意;
或有2解同时有1解,则需,由(1)可知不成立;
或有3解同时有0解,根据图象不存在此种情况,
或有0解同时有3解,则,解得,
故,
(3)若,显然当时,和均无解,
当时,和无解,不符合题意.
综上:的范围是,
故答案为:,
【点睛】
本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.
二、解答题
15.如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.
(1)求证:平面;
(2)求证:平面.
【答案】(1)见解析;(2)见解析
【解析】(1)根据,分别是,的中点,即可证明,从而可证平面;
(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证.
【详解】
(1)∵,分别是,的中点
∴
∵平面,平面
∴平面.
(2)∵为正三角形,且D是的中点
∴
∵平面平面,且平面平面,平面
∴平面
∵平面
∴
∵且
∴
∵,平面,且
∴平面.
【点睛】
本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.
16.在中,角、、的对边分别为、、,且.
(1)若,,求的值;
(2)若,求的值.
【答案】(1);(2).
【解析】(1)利用余弦定理得出关于的二次方程,结合,可求出的值;
(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.
【详解】
(1)在中,由余弦定理得,
,即,
解得或(舍),所以;
(2)由及得,,
所以,
又因为,所以,
从而,所以.
【点睛】
本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.
17.自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?
【答案】每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低
【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.
【详解】
设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,
由题意可知,,
整理得,
目标函数,
如图所示,为不等式组表示的可行域,
由图可知,当直线经过点时,最小,
解方程组,解得,,
然而,故点不是最优解.
因此在可行域的整点中,点使得取最小值,
即,
故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.
【点睛】
本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.
18.在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.
(1)求椭圆C的方程;
(2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.
【答案】(1);(2)①;②.
【解析】(1)根据椭圆的几何性质可得到a2,b2;
(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.
【详解】
(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以,
又由右准线方程为,得到,
解得,所以
所以,椭圆的方程为
(2)①设,而,则,
∵ , ∴
因为点都在椭圆上,所以
,将下式两边同时乘以再减去上式,解得,
所以
②由原点到直线的距离为,得,化简得:
联立直线的方程与椭圆的方程:,得
设,则,且
,
所以
的面积
,
因为在为单调减函数,
并且当时,,当时,,
所以的面积的范围为.
【点睛】
圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.
19.设函数,().
(1)若曲线在点处的切线方程为,求实数a、m的值;
(2)若对任意恒成立,求实数a的取值范围;
(3)关于x的方程能否有三个不同的实根?证明你的结论.
【答案】(1),;(2);(3)不能,证明见解析
【解析】(1)求出,结合导数的几何意义即可求解;
(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;
(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.
【详解】
(1),
,
曲线在点处的切线方程为,
,
解得.
(2)记,
整理得,
由题知,对任意恒成立,
对任意恒成立,即时,,
,解得,
当时,
对任意,,,
,
,即在单调递增,此时,
实数的取值范围为.
(3)关于的方程不可能有三个不同的实根,以下给出证明:
记,,
则关于的方程有三个不同的实根,等价于函数有三个零点,
,
当时,,
记,则,
在单调递增,
,即,
,
在单调递增,至多有一个零点;
当时,
记,
则,
在单调递增,即在单调递增,
至多有一个零点,则至多有两个单调区间,至多有两个零点.
因此,不可能有三个零点.
关于的方程不可能有三个不同的实根.
【点睛】
本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.
20.已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明.
【答案】(1)(2)函数有两个零点和
【解析】试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。
解析:(1)当时,,因为函数在上单调递增,
所以当时,恒成立.
函数的对称轴为.
①,即时,,
即,解之得,解集为空集;
②,即时,
即,解之得,所以
③,即时,
即,解之得,所以
综上所述,当 函数在区间 上单调递增.
(2)∵有两个极值点,
∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.
∵
∴函数也是在区间和上单调递增,在上单调递减
∵,∴是函数的一个零点.
由题意知:
∵,∴,∴∴,∴又
∵是方程的两个根,
∴,,
∴
∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增
∴当时,,当时,当时,
∴函数有两个零点和.
21.已知矩阵的一个特征值为4,求矩阵A的逆矩阵.
【答案】.
【解析】根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.
【详解】
因为矩阵的特征多项式,所以,所以.
因为,且,
所以.
【点睛】
本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.
22.在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C相交于两点A,B,求线段的长.
【答案】(1)l:,C:;(2)
【解析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;
(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.
【详解】
(1)由题意可得直线:,由,得,即,所以曲线C:.
(2)由(1)知,圆,半径.
∴圆心到直线的距离为:.
∴
【点睛】
本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题.
23.已知,且满足,证明:.
【答案】证明见解析
【解析】将化简可得,由柯西不等式可得证明.
【详解】
解:因为,,
所以,
又,
所以,当且仅当时取等号.
【点睛】
本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.
24.在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.
(1)求抛物线C的方程;
(2)若F在线段上,P是的中点,证明:.
【答案】(1);(2)见解析
【解析】(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;
(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.
【详解】
(1)抛物线C的焦点坐标为,且该点在直线上,
所以,解得,故所求抛物线C的方程为
(2)法一:由点F在线段上,可设直线,的方程分别为和且,,,则,,,.
∴直线的方程为,即.
又点在线段上,∴.
∵P是的中点,∴
∴,.
由于,不重合,所以
法二:设,,则
当直线的斜率为0时,不符合题意,故可设直线的方程为
联立直线和抛物线的方程,得
又,为该方程两根,所以,,,.
,
由于,不重合,所以
【点睛】
本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.
25.在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
【答案】(1)28种;(2)分布见解析,.
【解析】(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;
(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.
【详解】
解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.
(2)X的可能取值为0,1,2,3.
,
,
,
.
故X的概率分布为:
X | 0 | 1 | 2 | 3 |
P |
所以.
【点睛】
本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.