2020届全国大联考高三第一次大联考数学(理)试题(解析版)
展开2020届全国大联考高三第一次大联考数学(理)试题
一、单选题
1.已知集合A,则集合( )
A. B. C. D.
【答案】A
【解析】化简集合,,按交集定义,即可求解.
【详解】
集合,
,则.
故选:A.
【点睛】
本题考查集合间的运算,属于基础题.
2.命题“”的否定为( )
A. B.
C. D.
【答案】C
【解析】套用命题的否定形式即可.
【详解】
命题“”的否定为“”,所以命题“”的否定为“”.
故选:C
【点睛】
本题考查全称命题的否定,属于基础题.
3.( )
A. B. C. D.
【答案】D
【解析】先求出不定积分,再代入上下限来求定积分.
【详解】
由题,.
故选:D
【点睛】
本题考查定积分的运算,属于基础题.
4.设集合、是全集的两个子集,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】C
【解析】作出韦恩图,数形结合,即可得出结论.
【详解】
如图所示,,
同时.
故选:C.
【点睛】
本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.
5.已知函数,若,则的取值范围是( )
A. B. C. D.
【答案】B
【解析】对分类讨论,代入解析式求出,解不等式,即可求解.
【详解】
函数,由
得或
解得.
故选:B.
【点睛】
本题考查利用分段函数性质解不等式,属于基础题.
6.已知,则下列说法中正确的是( )
A.是假命题 B.是真命题
C.是真命题 D.是假命题
【答案】D
【解析】举例判断命题p与q的真假,再由复合命题的真假判断得答案.
【详解】
当时,故命题为假命题;
记f(x)=ex﹣x的导数为f′(x)=ex,
易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,
∴f(x)>f(0)=1>0,即,故命题为真命题;
∴是假命题
故选D
【点睛】
本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.
7.已知集合,定义集合,则等于( )
A. B.
C. D.
【答案】C
【解析】根据定义,求出,即可求出结论.
【详解】
因为集合,所以,
则,所以.
故选:C.
【点睛】
本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.
8.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )
A. B. C. D.
【答案】D
【解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.
【详解】
依题意有, ①
, ②
①②得,又因为,
所以,在上单调递增,
所以函数的单调递增区间为.
故选:D.
【点睛】
本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.
9.如图是二次函数的部分图象,则函数的零点所在的区间是( )
A. B. C. D.
【答案】B
【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.
【详解】
∵,结合函数的图象可知,
二次函数的对称轴为,,
,∵,
所以在上单调递增.
又因为,
所以函数的零点所在的区间是.
故选:B.
【点睛】
本题考查二次函数的图象及函数的零点,属于基础题.
10.对于任意,函数满足,且当时,函数.若,则大小关系是( )
A. B. C. D.
【答案】A
【解析】由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.
【详解】
对于任意,函数满足,
因为函数关于点对称,
当时,是单调增函数,
所以在定义域上是单调增函数.
因为,所以,
.
故选:A.
【点睛】
本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..
11.已知函数,则函数的图象大致为( )
A. B.
C. D.
【答案】A
【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.
【详解】
设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.
故选:A
【点睛】
本题考查了函数图像的性质,属于中档题.
12.已知函数,则在上不单调的一个充分不必要条件可以是( )
A. B. C.或 D.
【答案】D
【解析】先求函数在上不单调的充要条件,即在上有解,即可得出结论.
【详解】
,
若在上不单调,令,
则函数对称轴方程为
在区间上有零点(可以用二分法求得).
当时,显然不成立;
当时,只需
或,解得或.
故选:D.
【点睛】
本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.
二、填空题
13.如图,直线是曲线在处的切线,则________.
【答案】.
【解析】求出切线的斜率,即可求出结论.
【详解】
由图可知直线过点,
可求出直线的斜率,
由导数的几何意义可知,.
故答案为:.
【点睛】
本题考查导数与曲线的切线的几何意义,属于基础题.
14.已知集合,若,且,则实数所有的可能取值构成的集合是________.
【答案】.
【解析】化简集合,由,以及,即可求出结论.
【详解】
集合,若,
则的可能取值为,0,2,3,
又因为,
所以实数所有的可能取值构成的集合是.
故答案为:.
【点睛】
本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.
15.设函数在区间上的值域是,则的取值范围是__________.
【答案】.
【解析】配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.
【详解】
,顶点为
因为函数的值域是,
令,可得或.
又因为函数图象的对称轴为,
且,所以的取值范围为.
故答案为:.
【点睛】
本题考查函数值域,考查数形结合思想,属于基础题.
16.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.
【答案】
【解析】建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.
【详解】
以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,
所以,所以,
,
则,
则
,
当时,,则单调递减,当时,,则单调递增,
所以当时,最短,此时.
故答案为:
【点睛】
本题考查导数的实际应用,属于中档题.
三、解答题
17.已知集合,集合.
(1)求集合;
(2)若,求实数的取值范围.
【答案】(1);(2).
【解析】(1)求出函数的定义域,即可求出结论;
(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.
【详解】
(1)由,即得或,
所以集合或.
(2)集合,
由得或,解得或,
所以实数的取值范围为.
【点睛】
本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.
18.已知;.
(1)若为真命题,求实数的取值范围;
(2)若为真命题且为假命题,求实数的取值范围.
【答案】(1) (2)或
【解析】(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.
【详解】
(1),
且,
解得
所以当为真命题时,实数的取值范围是.
(2)由,可得,
又∵当时,,
.
∵当为真命题,且为假命题时,
∴与的真假性相同,
当假假时,有,解得;
当真真时,有,解得;
故当为真命题且为假命题时,可得或.
【点睛】
本题主要考查结合不等式的含有量词的命题的恒成立问题,存在性问题,考查复合命题的真假判断,意在考查学生对这些知识的掌握水平和分析推理能力.
19.已知的图象在处的切线方程为.
(1)求常数的值;
(2)若方程在区间上有两个不同的实根,求实数的值.
【答案】(1);(2)或.
【解析】(1)求出,由,建立方程求解,即可求出结论;
(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.
【详解】
(1),由题意知
,
解得(舍去)或.
(2)当时,
故方程有根,根为或,
+ | 0 | - | 0 | + | |
极大值 | 极小值 |
由表可见,当时,有极小值0.
由上表可知的减函数区间为,
递增区间为,.
因为,
.由数形结合可得或.
【点睛】
本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.
20.已知函数.
(1)当时,求函数的值域.
(2)设函数,若,且的最小值为,求实数的取值范围.
【答案】(1);(2).
【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;
(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.
【详解】
(1)当时,,
令,
∵∴,
而是增函数,∴,
∴函数的值域是.
(2)当时,则在上单调递减,
在上单调递增,所以的最小值为,
在上单调递增,最小值为,
而的最小值为,所以这种情况不可能.
当时,则在上单调递减且没有最小值,
在上单调递增最小值为,
所以的最小值为,解得(满足题意),
所以,解得.
所以实数的取值范围是.
【点睛】
本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.
21.已知函数,其导函数为,
(1)若,求不等式的解集;
(2)证明:对任意的,恒有.
【答案】(1) (2)证明见解析
【解析】(1)求出的导数,根据导函数的性质判断函数的单调性,再利用函数单调性解函数型不等式;
(2)构造函数,利用导数判断在区间上单调递减,结合可得结果.
【详解】
(1)若,则.
设,则,
所以在上单调递减,在上单调递增.
又当时,;当时,;当时,,
所以
所以在上单调递增,
又,所以不等式的解集为.
(2)设,再令,
,
在上单调递减,
又,
,
,
,
,
.
即
【点睛】
本题考查利用函数的导数来判断函数的单调性,再利用函数的单调性来解决不等式问题,属于较难题.
22.已知函数,其中为自然对数的底数.
(1)若函数在区间上是单调函数,试求的取值范围;
(2)若函数在区间上恰有3个零点,且,求的取值范围.
【答案】(1);(2).
【解析】(1)求出,再求恒成立,以及恒成立时,的取值范围;
(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.
【详解】
(1)由题意得,则,
当函数在区间上单调递增时,
在区间上恒成立.
∴(其中),解得.
当函数在区间上单调递减时,
在区间上恒成立,
∴(其中),解得.
综上所述,实数的取值范围是.
(2).
由,知在区间内恰有一个零点,
设该零点为,则在区间内不单调.
∴在区间内存在零点,
同理在区间内存在零点.
∴在区间内恰有两个零点.
由(1)易知,当时,在区间上单调递增,
故在区间内至多有一个零点,不合题意.
当时,在区间上单调递减,
故在区间内至多有一个零点,不合题意,
∴.令,得,
∴函数在区间上单凋递减,
在区间上单调递增.
记的两个零点为,
∴,必有.
由,得.
∴
又∵,
∴.
综上所述,实数的取值范围为.
【点睛】
本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.