
所属成套资源:2025春北师大版七年级下册课件
北师大版(2024)七年级下册(2024)1 认识三角形教案
展开
这是一份北师大版(2024)七年级下册(2024)1 认识三角形教案,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
1.了解三角形及相关概念,能正确识别和表示三角形;
2. 会按角的大小对三角形进行分类;
3.掌握三角形的内角和等于180°,并会据此解决简单 的问题.
一、情境导入
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微小的分子结构,都有什么样的形象?
(2)在我们的生活中有没有这样的形象呢?试举例.
二、合作探究
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
问题2:三角形中有几条线段?有几个角?
三角形三个内角的和等于180°
典例精析
【类型一】 求三角形内角的度数
已知,如图,D是△ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,∠DFB=90°,∠A=46°,∠D=50°.求∠ACB的度数.
解析:在△DFB中,根据三角形内角和定理,求得∠B的度数,再在△ABC中求∠ACB的度数即可.
解:在△DFB中,∵∠DFB=90°,∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.
方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.
【类型二】 判断三角形的形状
一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.无法判定
解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.
方法总结:判断三角形的形状,可从角的大小来判断,根据三角形的内角和及角之间的关系列出相关方程式求解即可.
探究点二:直角三角形的两个锐角互余
如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.
解析:根据直角三角形两锐角互余列式计算即可求出∠EDF,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.
方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.
三、板书设计
1.三角形的内角和定理:三角形的内角和等于180°.
2.三角形内角和定理的证明
3.直角三角形的性质:直角三角形两锐角互余.
本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
相关教案
这是一份初中数学1 认识三角形教案及反思,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
这是一份七年级下册(2024)1 认识三角形教案设计,共2页。教案主要包含了情境导入,板书设计等内容,欢迎下载使用。
这是一份初中数学北师大版(2024)七年级下册(2024)1 认识三角形教案,共3页。教案主要包含了导入新课,合作探究,当堂检测,课堂小结【板书设计】等内容,欢迎下载使用。
