开学活动
搜索
    上传资料 赚现金

    2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析)

    2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析)第1页
    2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析)第2页
    2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析)第3页
    还剩108页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析)

    展开

    这是一份2025高考数学专项讲义第04讲新高考新结构命题下的新定义解答题综合训练(学生版+解析),共111页。试卷主要包含了函数及导数新定义综合,数列新定义综合,集合新定义综合,平面向量新定义综合,立体几何新定义综合,解析几何新定义综合等内容,欢迎下载使用。
    (6类核心考点精讲精练)
    在新课标、新教材和新高考的“三新”背景下,高考改革又一次具有深度的向前推进。这不仅仅是一场考试形式的变革,更是对教育模式和教育理念的全面革新。
    当前的高考试题设计,以“三维”减量增质为核心理念,力求在减少题目数量的同时,提升题目的质量和考查的深度。这具体体现在以下三个方面:
    三考
    题目设计着重考查学生的知识主干、学习能力和学科素养,确保试题能够全面、客观地反映学生的实际水平。
    三重
    强调对学生思维深度、创新精神和实际应用能力的考查,鼓励学生不拘泥于传统模式,展现个人的独特见解和创造力。
    三突出
    试题特别突出对学生思维过程、思维方法和创新能力的考查,通过精心设计的题目,引导学生深入思考和探索,培养逻辑思维和创新能力。
    面对新高考新结构试卷的5个解答题,新定义版块作为一个重要的考查领域,通常在第19题这样的压轴大题中,分值为17分,将考查学生的解题能力和思维深度,是高考数学的分水岭,难度极大。
    面对如此多变的命题趋势,教师在教学备考过程中必须与时俱进。根据知识点及其命题方式,要能够灵活应对,根据试题的实际情况调整教学策略。本文基于新高考新结构试卷的特点,结合具体的新定义解答题实例,旨在为广大师生提供一份详尽的新定义解答题综合训练指南,以期在新高考中取得更好的成绩。
    考点一、函数及导数新定义综合
    1.(2024·广西·二模)已知函数fx=lnx,若存在gx≤fx恒成立,则称是的一个“下界函数”.
    (1)如果函数gx=tx−lnx为的一个“下界函数”,求实数的取值范围;
    (2)设函数Fx=fx−1ex+2ex,试问函数Fx是否存在零点?若存在,求出零点个数;若不存在,请说明理由.
    2.(2024·湖南·二模)罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔·罗尔于1691年提出的.它的表达如下:如果函数满足在闭区间连续,在开区间内可导,且,那么在区间内至少存在一点,使得.
    (1)运用罗尔定理证明:若函数在区间连续,在区间上可导,则存在,使得.
    (2)已知函数,若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.
    (3)证明:当时,有.
    3.(23-24高三下·山东菏泽·阶段练习)帕德近似是法国数学家亨利帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,,函数在处的阶帕德近似定义为:,且满足:,,,,,注:,,,,
    已知函数.
    (1)求函数在处的阶帕德近似,并求的近似数精确到
    (2)在(1)的条件下:
    ①求证:;
    ②若恒成立,求实数的取值范围.
    4.(2024·河北沧州·一模)对于函数,,若存在,使得,则称为函数的一阶不动点;若存在,使得,则称为函数的二阶不动点;依此类推,可以定义函数的阶不动点.其中一阶不动点简称为“不动点”,二阶不动点简称为“稳定点”,函数的“不动点”和“稳定点”构成的集合分别记为和,即,.
    (1)若,证明:集合中有且仅有一个元素;
    (2)若,讨论集合的子集的个数.
    5.(2024·山东聊城·二模)对于函数,若存在实数,使,其中,则称为“可移倒数函数”,为“的可移倒数点”.已知.
    (1)设,若为“的可移倒数点”,求函数的单调区间;
    (2)设,若函数恰有3个“可移1倒数点”,求的取值范围.
    6.(2024·浙江宁波·二模)定义:对于定义在区间上的函数,若存在实数,使得函数在区间上单调递增(递减),在区间上单调递减(递增),则称这个函数为单峰函数且称为最优点.已知定义在区间上的函数是以为最优点的单峰函数,在区间上选取关于区间的中心对称的两个试验点,称使得较小的试验点为好点(若相同,就任选其一),另一个称为差点.容易发现,最优点与好点在差点的同一侧.我们以差点为分界点,把区间分成两部分,并称好点所在的部分为存优区间,设存优区间为,再对区间重复以上操作,可以找到新的存优区间,同理可依次找到存优区间,满足,可使存优区间长度逐步减小.为了方便找到最优点(或者接近最优点),从第二次操作起,将前一次操作中的好点作为本次操作的一个试验点,若每次操作后得到的存优区间长度与操作前区间的长度的比值为同一个常数,则称这样的操作是“优美的”,得到的每一个存优区间都称为优美存优区间,称为优美存优区间常数.对区间进行次“优美的”操作,最后得到优美存优区间,令,我们可任取区间内的一个实数作为最优点的近似值,称之为在区间上精度为的“合规近似值”,记作.已知函数,函数.
    (1)求证:函数是单峰函数;
    (2)已知为函数的最优点,为函数的最优点.
    (i)求证:;
    (ii)求证:.
    注:.
    7.(2024·广西·二模)设,用x表示不超过x的最大整数,则y=x称为取整函数,取整函数是德国数学家高斯最先使用,也称高斯函数.该函数具有以下性质:
    ①y=x的定义域为R,值域为Z;
    ②任意实数都能表示成整数部分和纯小数部分之和,即x=x+x0≤x0,q,r∈Z,0≤rn+14.
    8.(2024·湖北·模拟预测)欧拉函数在密码学中有重要的应用.设n为正整数,集合,欧拉函数的值等于集合中与n互质的正整数的个数;记表示x除以y的余数(x和y均为正整数),
    (1)求和;
    (2)现有三个素数p,q,,,存在正整数d满足;已知对素数a和,均有,证明:若,则;
    (3)设n为两个未知素数的乘积,,为另两个更大的已知素数,且;又,,,试用,和n求出x的值.
    9.(2024·河北石家庄·二模)设集合是一个非空数集,对任意,定义,称为集合的一个度量,称集合为一个对于度量而言的度量空间,该度量空间记为.
    定义1:若是度量空间上的一个函数,且存在,使得对任意,均有:,则称是度量空间上的一个“压缩函数”.
    定义2:记无穷数列为,若是度量空间上的数列,且对任意正实数,都存在一个正整数,使得对任意正整数,均有,则称是度量空间上的一个“基本数列”.
    (1)设,证明:是度量空间上的一个“压缩函数”;
    (2)已知是度量空间上的一个压缩函数,且,定义,,证明:为度量空间上的一个“基本数列”.
    10.(22-23高二上·上海普陀·阶段练习)给出下列两个定义:
    I.对于函数,定义域为,且其在上是可导的,若其导函数定义域也为,则称该函数是“同定义函数”.
    II.对于一个“同定义函数”,若有以下性质:
    ①;②,其中为两个新的函数,是的导函数.
    我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.
    (1)判断函数和是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”;
    (2)已知命题是“双向导函数”且其“自导函数”为常值函数,命题.判断命题是的什么条件,证明你的结论;
    (3)已知函数.
    ①若的“自导函数”是,试求的取值范围;
    ②若,且定义,若对任意,不等式恒成立,求的取值范围.
    考点二、数列新定义综合
    1.(2024·广东梅州·二模)已知an是由正整数组成的无穷数列,该数列前项的最大值记为,即;前项的最小值记为,即,令(),并将数列称为an的“生成数列”.
    (1)若,求其生成数列的前项和;
    (2)设数列的“生成数列”为,求证:;
    (3)若是等差数列,证明:存在正整数,当时,,,,是等差数列.
    2.(2024·安徽池州·模拟预测)定义:若对恒成立,则称数列为“上凸数列”.
    (1)若,判断是否为“上凸数列”,如果是,给出证明;如果不是,请说明理由.
    (2)若为“上凸数列”,则当时,.
    (ⅰ)若数列为的前项和,证明:;
    (ⅱ)对于任意正整数序列(为常数且),若恒成立,求的最小值.
    3.(2024·北京东城·一模)有穷数列中,令,当p=q时,规定.
    (1)已知数列,写出所有的有序数对,且,使得;
    (2)已知整数列为偶数,若,满足:当为奇数时,;当为偶数时,.求的最小值;
    (3)已知数列满足,定义集合.若且为非空集合,求证:.
    4.(2024·辽宁大连·一模)对于数列,定义“T变换”:T将数列A变换成数列,其中,且.这种“T变换”记作,继续对数列B进行“T变换”,得到数列,依此类推,当得到的数列各项均为0时变换结束.
    (1)写出数列A:3,6,5经过5次“T变换”后得到的数列:
    (2)若不全相等,判断数列不断的“T变换”是否会结束,并说明理由;
    (3)设数列A:2020,2,2024经过k次“T变换”得到的数列各项之和最小,求k的最小值.
    5.(2024·辽宁·三模)若实数列满足,有,称数列为“数列”.
    (1)判断是否为“数列”,并说明理由;
    (2)若数列为“数列”,证明:对于任意正整数,且,都有
    (3)已知数列为“数列”,且.令,其中表示中的较大者.证明:,都有.
    6.(2024·广东深圳·二模)无穷数列,,…,,…的定义如下:如果n是偶数,就对n尽可能多次地除以2,直到得出一个奇数,这个奇数就是﹔如果n是奇数,就对尽可能多次地除以2,直到得出一个奇数,这个奇数就是.
    (1)写出这个数列的前7项;
    (2)如果且,求m,n的值;
    (3)记,,求一个正整数n,满足.
    7.(2024·辽宁·二模)如果数列,其中,对任意正整数都有,则称数列为数列的“接近数列”.已知数列为数列的“接近数列”.
    (1)若,求的值;
    (2)若数列是等差数列,且公差为,求证:数列是等差数列;
    (3)若数列满足,且,记数列的前项和分别为,试判断是否存在正整数,使得?若存在,请求出正整数的最小值;若不存在,请说明理由.(参考数据:)
    8.(2023·山西·模拟预测)对于数列,若存在,使得对任意,总有,则称为“有界变差数列”.
    (1)若各项均为正数的等比数列为有界变差数列,求其公比q的取值范围;
    (2)若数列满足,且,证明:是有界变差数列;
    (3)若,均为有界变差数列,且,证明:是有界变差数列.
    9.(2024·江西上饶·二模)对于数列,定义“变换”:将数列变换成数列,其中,且.这种“变换”记作,继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为0时变换结束.
    (1)写出数列,经过6次“变换”后得到的数列;
    (2)若不全相等,判断数列经过不断的“变换”是否会结束,并说明理由;
    (3)设数列经过次“变换”得到的数列各项之和最小,求的最小值.
    10.(2024·河北石家庄·二模)设集合是一个非空数集,对任意,定义,称为集合的一个度量,称集合为一个对于度量而言的度量空间,该度量空间记为.
    定义1:若是度量空间上的一个函数,且存在,使得对任意,均有:,则称是度量空间上的一个“压缩函数”.
    定义2:记无穷数列为,若是度量空间上的数列,且对任意正实数,都存在一个正整数,使得对任意正整数,均有,则称是度量空间上的一个“基本数列”.
    (1)设,证明:是度量空间上的一个“压缩函数”;
    (2)已知是度量空间上的一个压缩函数,且,定义,,证明:为度量空间上的一个“基本数列”.
    考点三、集合新定义综合
    1.(24-25高三上·江苏南通·阶段练习)已知集合,若存在数阵满足:①;②;则称为“好集合”,并称数阵为的一个“好数阵”.
    (1)已知数阵是的一个好数阵,试写出,,,的值;
    (2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;
    (3)判断是否为“好集合”.若是,求出满足条件的所有“好数阵”;若不是,说明理由.
    2.(2024·广东·模拟预测)已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
    (1)试判断集合是否具有性质,并说明理由;
    (2)若集合具有性质,证明:集合是集合的“期待子集”;
    (3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
    3.(2024·北京延庆·一模)已知数列,记集合.
    (1)若数列为,写出集合;
    (2)若,是否存在,使得?若存在,求出一组符合条件的;若不存在,说明理由;
    (3)若,把集合中的元素从小到大排列,得到的新数列为, 若,求的最大值.
    4.(2024·湖南邵阳·二模)给定整数,由元实数集合定义其随影数集.若,则称集合为一个元理想数集,并定义的理数为其中所有元素的绝对值之和.
    (1)分别判断集合是不是理想数集;(结论不要求说明理由)
    (2)任取一个5元理想数集,求证:;
    (3)当取遍所有2024元理想数集时,求理数的最小值.
    注:由个实数组成的集合叫做元实数集合,分别表示数集中的最大数与最小数.
    5.(2024·北京·模拟预测)已知集合,其中都是的子集且互不相同,记的元素个数,的元素个数.
    (1)若,直接写出所有满足条件的集合;
    (2)若,且对任意,都有,求的最大值;
    (3)若且对任意,都有,求的最大值.
    6.(24-25高三上·河北沧州·阶段练习)已知有限集,若中的元素满足,则称为“元重生集”.
    (1)集合是否为“2元重生集”,请说明理由;
    (2)是否存在集合中元素均为正整数的“3元重生集”?如果有,请求出有几个,如果没有,请说明理由;
    (3)若,证明:“元重生集”有且只有一个,且.
    7.(23-24高三上·北京昌平·期末)已知为有穷正整数数列,且,集合.若存在,使得,则称为可表数,称集合为可表集.
    (1)若,判定31,1024是否为可表数,并说明理由;
    (2)若,证明:;
    (3)设,若,求的最小值.
    8.(23-24高三下·北京·阶段练习)设A是正整数集的一个非空子集,如果对于任意,都有或,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
    (1)直接写出的所有自邻集;
    (2)若n为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
    (3)若,求证:.
    9.(24-25高三上·四川泸州·阶段练习)已知正整数,集合,,,,,,2,,.对于中的元素,,,,,,定义.令.
    (1)直接写出的两个元素及的元素个数;
    (2)已知,,,,满足对任意,都有,求的最大值;
    (3)证明:对任意,,,,总存在,使得.
    10.(2024·北京丰台·一模)已知集合(,),若存在数阵满足:
    ①;
    ②.
    则称集合为“好集合”,并称数阵为的一个“好数阵”.
    (1)已知数阵是的一个“好数阵”,试写出,,,的值;
    (2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;
    (3)判断是否为“好集合”.若是,求出满足条件的所有“好数阵”;若不是,说明理由.
    考点四、平面向量新定义综合
    1.(21-22高一下·北京丰台·期末)在平面直角坐标系中,为坐标原点,对任意两个向量,,作,.当,不共线时,记以,为邻边的平行四边形的面积为;当,共线时,规定.
    (1)分别根据下列已知条件求:
    ①,;②,;
    (2)若向量,求证:;
    (3)若A,B,C是以О为圆心的单位圆上不同的点,记,,.
    (i)当时,求的最大值;
    (ii)写出的最大值.(只需写出结果)
    2.(21-22高一下·山东日照·期末)已知在平面直角坐标系中,为坐标原点,定义非零向量的“相伴函数”为,向量称为函数的“相伴向量”;记平面内所有向量的“相伴函数”构成的集合为
    (1)已知,,若函数为集合中的元素,求其“相伴向量”的模的取值范围;
    (2)已知点满足条件:,,若向量的“相伴函数”在处取得最大值,当在区间变化时,求的取值范围;
    (3)当向量时,“相伴函数”为,若,方程存在4个不相等的实数根,求实数的取值范围.
    3.(2024·全国·模拟预测)设有维向量,,称为向量和的内积,当,称向量和正交.设为全体由和1构成的元数组对应的向量的集合.
    (1)若,写出一个向量,使得.
    (2)令.若,证明:为偶数.
    (3)若,是从中选出向量的个数的最大值,且选出的向量均满足,猜测的值,并给出一个实例.
    4.(23-24高一下·福建福州·期中)对于向量集,记向量.如果存在向量,使得,那么称是向量集的“长向量”.
    (1)设向量,.若是向量集的“长向量”,求实数x的取值范围;
    (2)设向量,,则向量集是否存在“长向量”?给出你的结论并说明理由;
    (3)已知均是向量集的“长向量”,其中,.设在平面直角坐标系xOy中的点集,其中,,且与关于点对称,与关于点对称,求的最小值.
    5.(23-24高三下·山东菏泽·阶段练习)我们知道,在平面内取定单位正交基底建立坐标系后,任意一个平面向量,都可以用二元有序实数对表示.平面向量又称为二维向量.一般地,n元有序实数组称为n维向量,它是二维向量的推广.类似二维向量,对于n维向量,也可定义两个向量的数量积、向量的长度(模)等:设,,则;.已知向量满足,向量满足.
    (1)求的值;
    (2)若,其中,当且时,证明:.
    6.(22-23高一下·北京·阶段练习)对于向量,若,,三数互不相等,令向量,其中,,,.
    (1)当时,试写出向量;
    (2)证明:对于任意的,向量中的三个数,,至多有一个为0;
    (3)若,证明:存在正整数,使得.
    7.(22-23高一下·北京东城·期末)对于三维向量,定义“变换”:,其中,.记,.
    (1)若,求及;
    (2)证明:对于任意,经过若干次变换后,必存在,使;
    (3)已知,将再经过次变换后,最小,求的最小值.
    8.(23-24高三下·湖南常德·阶段练习)对于给定的正整数n,记集合,其中元素称为一个n维向量.特别地,称为零向量.设,,,定义加法和数乘:,.对一组向量,,…,,若存在一组不全为零的实数,,…,,使得,则称这组向量线性相关.否则,称为线性无关.
    (1)对,判断下列各组向量是线性相关还是线性无关,并说明理由.
    ①,;
    ②,,.
    (2)已知,,线性无关,判断,,是线性相关还是线性无关,并说明理由.
    (3)已知个向量,,…,线性相关,但其中任意个都线性无关,证明:
    ①如果存在等式(,,2,3,…,m),则这些系数,,…,或者全为零,或者全不为零;
    ②如果两个等式,(,,,2,3,…,m)同时成立,其中,则.
    9.(23-24高二下·江苏淮安·阶段练习)n个有次序的实数,,…,所组成的有序数组称为一个n维向量,其中称为该向量的第i个分量.特别地,对一个n维向量,若,称为n维信号向量.设,,则和的内积定义为,且.
    (1)直接写出4个两两垂直的4维信号向量;
    (2)证明:不存在10个两两垂直的10维信号向量;
    (3)已知k个两两垂直的2024维信号向量,,…,满足它们的前m个分量都是相同的,求证:.
    10.(20-21高一下·北京·期中)我们学过二维的平面向量,其坐标为,那么对于维向量,其坐标为.设维向量的所有向量组成集合.当时,称为的“特征向量”,如的“特征向量”有,,,.设和为的“特征向量”, 定义.
    (1)若,,且,,计算,的值;
    (2)设且中向量均为的“特征向量”,且满足:,,当时,为奇数;当时,为偶数.求集合中元素个数的最大值;
    (3)设,且中向量均为的“特征向量”,且满足:,,且时,.写出一个集合,使其元素最多,并说明理由.
    考点五、立体几何新定义综合
    1.(22-23高三上·河北·阶段练习)已知,,,定义一种运算:,在平行六面体中,,,.
    (1)证明:平行六面体是直四棱柱;
    (2)计算,并求该平行六面体的体积,说明的值与平行六面体体积的关系.
    2.(22-23高二上·北京·期中)“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼·闵可夫斯基提出来的.如图是抽象的城市路网,其中线段是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用表示,又称“曼哈顿距离”,即,因此“曼哈顿两点间距离公式”:若,,则
    (1)①点,,求的值.
    ②求圆心在原点,半径为1的“曼哈顿单位圆”方程.
    (2)已知点,直线,求B点到直线的“曼哈顿距离”最小值;
    (3)设三维空间4个点为,,且,,.设其中所有两点“曼哈顿距离”的平均值即,求最大值,并列举最值成立时的一组坐标.
    3.(20-21高一下·福建泉州·期末)球面三角学是球面几何学的一部分,主要研究球面多边形(特别是三角形)的角、边、面积等问题,其在航海、航空、卫星定位等方面都有广泛的应用.定义:球的直径的两个端点称为球的一对对径点;过球心的平面与球面的交线称为该球的大圆;对于球面上不在同一个大圆上的点,,,过任意两点的大圆上的劣弧,,所组成的图形称为球面,记其面积为.易知:球的任意两个大圆均可交于一对对径点,如图1的和;若球面上,,的对径点分别为,,,则球面与球面全等.如图2,已知球的半径为,圆弧和所在平面交成的锐二面角的大小为,圆弧和所在平面、圆弧和所在平面交成的锐二面角的大小分别为,.记.
    (1)请写出,,的值,并猜测函数的表达式;
    (2)求(用,,,表示).
    4.(22-23高二上·上海徐汇·期中)设P为多面体M的一个顶点,定义多面体M在点P处的离散曲率为,其中(,2,…,k,)为多面体M的所有与点P相邻的顶点,且平面,平面,…,平面和平面为多面体M的所有以P为公共点的面.已知在直四棱柱中,底面ABCD为菱形,且.
    (1)求直四棱柱在各个顶点的离散曲率之和;
    (2)若直四棱柱在点A处的离散曲率为x,直四棱柱体积为,求函数的解析式及单调区间.
    考点六、解析几何新定义综合
    1.(22-23高二下·江苏盐城·期末)焦距为2c的椭圆(a>b>0),如果满足“2b=a+c”,则称此椭圆为“等差椭圆”.
    (1)如果椭圆(a>b>0)是“等差椭圆”,求的值;
    (2)对于焦距为12的“等差椭圆”,点A为椭圆短轴的上顶点,P为椭圆上异于A点的任一点,Q为P关于原点O的对称点(Q也异于A),直线AP、AQ分别与x轴交于M、N两点,判断以线段MN为直径的圆是否过定点?说明理由.
    2.(23-24高二上·北京昌平·期中)在平面上,我们把与定点距离之积等于的动点的轨迹称为伯努利双纽线,为该曲线的两个焦点.已知曲线是一条伯努利双纽线.
    (1)求曲线的焦点的坐标;
    (2)判断曲线上是否存在两个不同的点、(异于坐标原点),使得以为直径的圆过坐标原点.如果存在,求点、坐标;如果不存在,请说明理由.
    3.(23-24高二上·贵州贵阳·期末)阅读材料:
    在平面直角坐标系中,若点与定点(或的距离和它到定直线(或)的距离之比是常数,则,化简可得,设,则得到方程,所以点的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点是椭圆的一个焦点,直线称为相应于焦点的准线;定点是椭圆的另一个焦点,直线称为相应于焦点的准线.
    根据椭圆的这个定义,我们可以把到焦点的距离转化为到准线的距离.若点在椭圆上,是椭圆的右焦点,椭圆的离心率,则点到准线的距离为,所以,我们把这个公式称为椭圆的焦半径公式.
    结合阅读材料回答下面的问题:
    已知椭圆的右焦点为,点是该椭圆上第一象限的点,且轴,若直线是椭圆右准线方程,点到直线的距离为8.
    (1)求点的坐标;
    (2)若点也在椭圆上且的重心为,判断是否能构成等差数列?如果能,求出该等差数列的公差,如果不能,说明理由.
    4.(2021高三·全国·专题练习)在平面直角坐标系中,对于直线和点,,记,若,则称点,被直线l分离,若曲线c与直线l没有公共点,且曲线c上存在点,被直线l分隔,则称直线l为曲线c的一条分隔线.
    (1)求证:点,被直线分隔;
    (2)若直线是曲线的分隔线,求实数k的取值范围;
    (3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.
    5.(22-23高三上·上海虹口·阶段练习)已知椭圆的左、右焦点分别为,直线l的斜率为k,在y轴上的截距为m.
    (1)设,若的焦距为2,l过点,求l的方程;
    (2)设,若是上的一点,且,l与交于不同的两点A、B,Q为的上顶点,求面积的最大值;
    (3)设是l的一个法向量,M是l上一点,对于坐标平面内的定点N,定义.用a、b、k、m表示,并利用与的大小关系,提出一个关于l与位置关系的真命题,给出该命题的证明.
    6.(2023·全国·模拟预测)定义:一般地,当且时,我们把方程表示的椭圆称为椭圆的相似椭圆.已知椭圆,椭圆(且)是椭圆的相似椭圆,点为椭圆上异于其左、右顶点的任意一点.
    (1)当时,若与椭圆有且只有一个公共点的直线恰好相交于点,直线的斜率分别为,求的值;
    (2)当(e为椭圆的离心率)时,设直线与椭圆交于点,直线与椭圆交于点,求的值.
    7.(2024·河南信阳·模拟预测)在空间解析几何中,可以定义曲面(含平面)的方程,若曲面和三元方程之间满足:①曲面上任意一点的坐标均为三元方程的解;②以三元方程的任意解为坐标的点均在曲面上,则称曲面的方程为,方程的曲面为.已知空间中某单叶双曲面的方程为,双曲面可视为平面中某双曲线的一支绕轴旋转一周所得的旋转面,已知直线过C上一点,且以为方向向量.
    (1)指出平面截曲面所得交线是什么曲线,并说明理由;
    (2)证明:直线在曲面上;
    (3)若过曲面上任意一点,有且仅有两条直线,使得它们均在曲面上.设直线在曲面上,且过点,求异面直线与所成角的余弦值.
    8.(2024·辽宁沈阳·模拟预测)在平面直角坐标系中,利用公式①(其中,,,为常数),将点变换为点的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由,,,组成的正方形数表唯一确定,我们将称为二阶矩阵,矩阵通常用大写英文字母,,…表示.
    (1)如图,在平面直角坐标系中,将点绕原点按逆时针旋转角得到点(到原点距离不变),求坐标变换公式及对应的二阶矩阵;
    (2)在平面直角坐标系中,求双曲线绕原点按逆时针旋转(到原点距离不变)得到的双曲线方程;
    (3)已知由(2)得到的双曲线,上顶点为,直线与双曲线的两支分别交于,两点(在第一象限),与轴交于点.设直线,的倾斜角分别为,,求证:为定值.
    9.(2022·福建·模拟预测)等轴双曲线是离心率为的双曲线,可建立合适的坐标平面使之为反比例函数.
    (1)在等轴双曲线上有三点,,,其横坐标依次是,,.设,,分别为,,的中点,试求的外接圆圆心的横坐标.
    (2)双曲线的渐近线为和,上有三个不同的点,,,直线、直线、直线与分别交于,,,过,,分别作直线、直线、直线的垂线,,.
    (i)当为等轴双曲线时,证明:,,三线共点.
    (ii)当不为等轴双曲线时,记,,分别是与,与,与的交点,类似地从另一条渐近线出发来定义,,.证明:.
    10.(24-25高三上·内蒙古赤峰·阶段练习)在平面直角坐标系中,定义:若曲线和上分别存在点,关于原点对称,则称点和点为和的一对“关联点”.
    (1)若上任意一点的“关联点”为点,求点所在的曲线方程.
    (2)若上任意一点的“关联点”为点,求的取值范围.
    (3)若和有且仅有两对“关联点”,求实数的取值范
    第04讲 新高考新结构命题下的新定义
    解答题综合训练
    (6类核心考点精讲精练)
    在新课标、新教材和新高考的“三新”背景下,高考改革又一次具有深度的向前推进。这不仅仅是一场考试形式的变革,更是对教育模式和教育理念的全面革新。
    当前的高考试题设计,以“三维”减量增质为核心理念,力求在减少题目数量的同时,提升题目的质量和考查的深度。这具体体现在以下三个方面:
    三考
    题目设计着重考查学生的知识主干、学习能力和学科素养,确保试题能够全面、客观地反映学生的实际水平。
    三重
    强调对学生思维深度、创新精神和实际应用能力的考查,鼓励学生不拘泥于传统模式,展现个人的独特见解和创造力。
    三突出
    试题特别突出对学生思维过程、思维方法和创新能力的考查,通过精心设计的题目,引导学生深入思考和探索,培养逻辑思维和创新能力。
    面对新高考新结构试卷的5个解答题,新定义版块作为一个重要的考查领域,通常在第19题这样的压轴大题中,分值为17分,将考查学生的解题能力和思维深度,是高考数学的分水岭,难度极大。
    面对如此多变的命题趋势,教师在教学备考过程中必须与时俱进。根据知识点及其命题方式,要能够灵活应对,根据试题的实际情况调整教学策略。本文基于新高考新结构试卷的特点,结合具体的新定义解答题实例,旨在为广大师生提供一份详尽的新定义解答题综合训练指南,以期在新高考中取得更好的成绩。
    考点一、函数及导数新定义综合
    1.(2024·广西·二模)已知函数fx=lnx,若存在gx≤fx恒成立,则称是的一个“下界函数”.
    (1)如果函数gx=tx−lnx为的一个“下界函数”,求实数的取值范围;
    (2)设函数Fx=fx−1ex+2ex,试问函数Fx是否存在零点?若存在,求出零点个数;若不存在,请说明理由.
    【答案】(1)(−∞,−2e)
    (2)函数F(x)是否存在零点,理由见解答
    【分析】(1)把恒成立问题转换为求2xlnx的最小值问题,利用导数求出最小值即可;
    (2)把函数整理成F(x)=lnx−1ex+1ex≥−1ex−1ex+2ex=1x(1e−xex),要判断是否有零点,只需看的正负问题,令G(x)=1e−xex,利用导数分析即可.
    【详解】(1)由g(x)≤f(x)恒成立,可得tx−lnx≤lnx恒成立,
    所以t≤2xlnx恒成立,令ℎ(x)=2xlnx,所以ℎ′(x)=2(1+lnx),
    当时, ,在单调递减;
    当x∈(1e,+∞)时, ,在(1e,+∞)单调递增;
    所以的最小值为ℎ(1e)=−2e,所以t≤−2e,
    实数t的取值范围(−∞,−2e];
    (2)由(1)可知2xlnx≥−2e,所以2lnx≥−2ex,所以lnx≥−1ex,①
    又F(x)=f(x)−1ex+2ex,所以F(x)=lnx−1ex+2ex≥−1ex−1ex+2ex=1x(1e−xex),
    令G(x)=1e−xex,所以G′(x)=x−1ex,
    当时, ,在单调递减;
    当时, ,在(1,+∞)单调递增;
    所以G(x)≥G(1)=0,②
    所以F(x)=lnx−1ex+2ex≥−1ex−1ex+2ex=1x(1e−xex)≥0,
    又①②中取等号的条件不同,所以
    所以函数没有零点.
    2.(2024·湖南·二模)罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔·罗尔于1691年提出的.它的表达如下:如果函数满足在闭区间连续,在开区间内可导,且,那么在区间内至少存在一点,使得.
    (1)运用罗尔定理证明:若函数在区间连续,在区间上可导,则存在,使得.
    (2)已知函数,若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.
    (3)证明:当时,有.
    【答案】(1)证明见解析;
    (2);
    (3)证明见解析.
    【分析】(1)根据给定条件,构造函数,利用导数结合罗尔定理推导即得.
    (2)求出函数的导数,利用(1)的结论建立恒成立的不等式,再利用导数求出函数的值域即得.
    (3)构造函数,求出导数结合(1)的结论,借助不等式性质推理即得.
    【详解】(1)令,则,
    令函数,则,
    显然在上连续,且在上可导,由罗尔定理,存在,使得,
    即,所以.
    (2)依题意,,
    不妨令,则恒成立,
    由(1)得,于是,即,
    因此,令,
    求导得,函数在上单调递增,则,
    而函数在上单调递增,其值域为,
    则,所以实数的取值范围是.
    (3)令函数,显然函数在上可导,
    由(1),存在,使得,
    又,则,
    因此,而,则,即,
    所以.
    【点睛】思路点睛:涉及函数新定义问题,理解新定义,找出数量关系,联想与题意有关的数学知识和方法,构造函数,转化、抽象为相应的函数问题作答.
    3.(23-24高三下·山东菏泽·阶段练习)帕德近似是法国数学家亨利帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,,函数在处的阶帕德近似定义为:,且满足:,,,,,注:,,,,
    已知函数.
    (1)求函数在处的阶帕德近似,并求的近似数精确到
    (2)在(1)的条件下:
    ①求证:;
    ②若恒成立,求实数的取值范围.
    【答案】(1),
    (2)① 证明见解析;②
    【分析】(1)先写出阶帕德近似,然后求导得到,,令得,所以,求导得到求解即可;
    (2)令,,求导得到判断Fx在及上均单调递减,按照和分类讨论求解即可;
    由已知令,且,所以是ℎx的极大值点,求导得到,故,,得到之后写出,然后求导判断单调性证明即可.
    【详解】(1)由题可知函数在处的阶帕德近似,
    则,,,
    由得,所以,
    则,又由得,所以,
    由得,所以,
    所以.
    (2)①令,,
    因为,
    所以Fx在及上均单调递减.
    当,,即,
    而,所以,即,
    当,,即,
    而,所以,即,
    所以不等式恒成立;
    ②由得在上恒成立,
    令,且,所以是ℎx的极大值点,
    又,故,则,
    当时,,所以,
    当时,,,则ℎ′x>0,故ℎx在上单调递增,
    所以当时,,
    当时,,
    令,因为,所以φx在上单调递减,
    所以,又因为在上,
    故当时,,
    综上,当时,恒成立.
    【点睛】方法点睛:利用导数证明不等式问题,方法如下:
    (1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;
    (2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;
    (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.
    4.(2024·河北沧州·一模)对于函数,,若存在,使得,则称为函数的一阶不动点;若存在,使得,则称为函数的二阶不动点;依此类推,可以定义函数的阶不动点.其中一阶不动点简称为“不动点”,二阶不动点简称为“稳定点”,函数的“不动点”和“稳定点”构成的集合分别记为和,即,.
    (1)若,证明:集合中有且仅有一个元素;
    (2)若,讨论集合的子集的个数.
    【答案】(1)证明见解析
    (2)
    答案见解析
    【分析】(1)令,求导,可得函数的单调性,进而可得函数有唯一零点,可得结论;
    (2)由题意可知只需研究的不动点即可,令,求出其导数,判断其单调性,然后分类讨论的取值范围,判断的零点情况,即可判断的稳定点个数.,进而可得集合的子集的个数.
    【详解】(1)令,求导得,
    令,可得,
    当,,当,,
    所以,所以有唯一零点,
    所以集合中有且仅有一个元素;
    (2)当时,由函数,
    可得导函数,所以在上单调递增,
    由反函数的知识,稳定点在原函数与反函数的交点上,
    即稳定点与的不动点等价,
    故只需研究的不动点即可;
    令,
    则,则在上单调递减,
    ①当时,恒成立,即在上单调递增,
    当x无限接近于0时,趋向于负无穷小,
    且,
    故存在唯一的,使得,即有唯一解,
    所以此时有唯一不动点;
    ②当时,即时,,
    当趋向无穷大时,趋近于0,此时,
    存在唯一,使得,
    此时在上单调递增,在上单调递减,
    故,
    当趋近于0时,趋向于负无穷大,当向正无穷大时,趋向负无穷大时,
    设,则在上单调递增,
    且,
    又在时单调递增,
    故(i)当时,即,
    此时,方程有一个解,即有唯一不动点,所以集合的子集有2个;
    (ii)当,即,
    此时,方程无解,即无不动点,所以集合的子集有1个;
    (iii)当时,即,此时,方程有两个解,即有两个不动点,所以集合的子集有4个;
    综上,当时或时,集合的子集有2个;
    当时,集合的子集有1个;
    当时,集合的子集有4个.
    【点睛】方法点睛:本题属新定义题型,读懂题意是关键;研究方程根的个数问题常转化为判断函数零点的个数问题,利用导数研究含参函数的单调性,从而判断方程根(或函数零点)的个数问题.注意分类讨论思想的应用.
    5.(2024·山东聊城·二模)对于函数,若存在实数,使,其中,则称为“可移倒数函数”,为“的可移倒数点”.已知.
    (1)设,若为“的可移倒数点”,求函数的单调区间;
    (2)设,若函数恰有3个“可移1倒数点”,求的取值范围.
    【答案】(1)单调递增区间为,递减区间为;
    (2).
    【分析】(1)根据给定的定义,列式求出值,再利用导数求出函数的单调区间.
    (2)利用定义转化为求方程恰有3个不同的实根,再借助导数分段探讨零点情况即可.
    【详解】(1)由为“ℎx的可移倒数点”,得,
    即,整理,即,解得,
    由的定义域为R,求导得,
    当时,单调递增;时,单调递减;
    时,单调递增,
    所以φx的单调递增区间为,递减区间为.
    (2)依题意,,
    由恰有3个“可移1倒数点”,得方程恰有3个不等实数根,
    ①当时,,方程可化为,解得,
    这与不符,因此在0,+∞内没有实数根;
    ②当时,,方程可化为,
    该方程又可化为.
    设,则,
    因为当时,,所以在内单调递增,
    又因为,所以当时,,
    因此,当时,方程在内恰有一个实数根;
    当时,方程在内没有实数根.
    ③当时,没有意义,所以不是的实数根.
    ④当时,,方程可化为,
    化为,于是此方程在内恰有两个实数根,
    则有,解得,
    因此当时,方程在内恰有两个实数根,
    当时,方程在内至多有一个实数根,
    综上,的取值范围为.
    【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数的取值范围.
    6.(2024·浙江宁波·二模)定义:对于定义在区间上的函数,若存在实数,使得函数在区间上单调递增(递减),在区间上单调递减(递增),则称这个函数为单峰函数且称为最优点.已知定义在区间上的函数是以为最优点的单峰函数,在区间上选取关于区间的中心对称的两个试验点,称使得较小的试验点为好点(若相同,就任选其一),另一个称为差点.容易发现,最优点与好点在差点的同一侧.我们以差点为分界点,把区间分成两部分,并称好点所在的部分为存优区间,设存优区间为,再对区间重复以上操作,可以找到新的存优区间,同理可依次找到存优区间,满足,可使存优区间长度逐步减小.为了方便找到最优点(或者接近最优点),从第二次操作起,将前一次操作中的好点作为本次操作的一个试验点,若每次操作后得到的存优区间长度与操作前区间的长度的比值为同一个常数,则称这样的操作是“优美的”,得到的每一个存优区间都称为优美存优区间,称为优美存优区间常数.对区间进行次“优美的”操作,最后得到优美存优区间,令,我们可任取区间内的一个实数作为最优点的近似值,称之为在区间上精度为的“合规近似值”,记作.已知函数,函数.
    (1)求证:函数是单峰函数;
    (2)已知为函数的最优点,为函数的最优点.
    (i)求证:;
    (ii)求证:.
    注:.
    【答案】(1)证明见解析;
    (2)(i)证明见解析;(ii)证明见解析.
    【分析】(1)根据单峰函数的定义,求导确定得单调性即可;
    (2)(i)令,则,令,根据为函数的最优点,为函数的最优点,可确定导函数的零点,根据导函数的零点验证结论即可;(ii)根据“合规近似值”的定义,结合函数单调性与不等式的性质证明结论即可.
    【详解】(1)因为,令,则.,
    因为,则,则f′x在上单调递减,
    又因为,
    由零点存在定理知,存在唯一的,使得,且
    时,,f′x

    相关试卷

    新高考新结构命题下的新定义解答题综合训练(学生及教师版):

    这是一份新高考新结构命题下的新定义解答题综合训练(学生及教师版),文件包含第04讲新高考新结构命题下的新定义解答题综合训练教师版docx、第04讲新高考新结构命题下的新定义解答题综合训练学生版docx等2份试卷配套教学资源,其中试卷共111页, 欢迎下载使用。

    【高考数学】一轮复习:精讲精练(题型·分层练·新高考)2025版《新结构》第01讲 集合 (含新定义解答题)(分层精练):

    这是一份【高考数学】一轮复习:精讲精练(题型·分层练·新高考)2025版《新结构》第01讲 集合 (含新定义解答题)(分层精练),文件包含第01讲集合含新定义解答题分层精练原卷版docx、第01讲集合含新定义解答题分层精练解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    新定义新情景压轴解答题-2024年高考数学压轴题专项训练:

    这是一份新定义新情景压轴解答题-2024年高考数学压轴题专项训练,文件包含压轴题型新定义新情景压轴解答题解析版pdf、压轴题型新定义新情景压轴解答题学生版pdf等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map