所属成套资源:中考数学第一轮复习
中考数学第一轮复习专题03 函数、方程及不等式的应用(原卷版)
展开
这是一份中考数学第一轮复习专题03 函数、方程及不等式的应用(原卷版),共32页。试卷主要包含了图形信息问题,方案选择问题,商品利润问题,行程问题,销售盈亏问题,工程问题,几何问题,古代问题等内容,欢迎下载使用。
TOC \ "1-3" \n \h \z \u
\l "_Tc161045680" 题型01 根据实际问题列方程(组)或不等式(组)
\l "_Tc161045681" 题型02 利用方程方程(组)与不等式(组)解决实际问题
\l "_Tc161045682" 类型一 图形信息问题
\l "_Tc161045683" 类型二 方案选择问题
\l "_Tc161045684" 类型三 商品利润问题
\l "_Tc161045685" 类型四 行程问题
\l "_Tc161045686" 类型五 销售盈亏问题
\l "_Tc161045687" 类型六 工程问题
\l "_Tc161045688" 类型七 几何问题
\l "_Tc161045689" 类型八 工程问题
\l "_Tc161045690" 类型九 古代问题
\l "_Tc161045691" 类型十 抛物线问题
\l "_Tc161045692" 类型十一 实验问题
\l "_Tc161045693" 类型十二 动态问题
题型01 根据实际问题列方程(组)或不等式(组)
1.(2023·浙江绍兴·校联考三模)为迎接亚运,某校购买了一批篮球和足球,已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元,根据题意可列方程5000x=2×400030+x,则方程中x表示( )
A.篮球的数量B.篮球的单价C.足球的数量D.足球的单价
2.(2023·河南郑州·校考模拟预测)如图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.设共有银子x两,共有y人,则所列方程正确的是( )
A.x+47=x-89B.7y-4=9y+8C.x-49=x+87D.7y+4=9y-8
3.(2023·广西贵港·统考三模)小明、小华两人练习跑步,如果小华先跑10m,则小明跑6s就可追上他;如果小华先跑2s,则小明跑4s就可追上他,若设小明的速度为xm/s,小华的速度为ym/s,则下列符合题意的方程组是( )
A.6x-6y=104x-2=4yB.6x-6y=104x-2x=4yC.6x+10=6y4x-4y=2D.6x-6y=102x=3y
4.(2023·广东肇庆·统考三模)通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组( )
A.x+y=300x+2y=300×1500B.x+y=300×50%x=2y
C.x+y=300300×85%-x+2y=300×50%D.x+y=300×50%3y=300×15%
5.(2023·辽宁朝阳·校联考三模)某市用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,某市高架路上共22km的路程,利用城市大数据后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均通过速度为xkm/h,则下列方程正确的是( )
A.22x-221+15%x=5B.22x-221+15%x=112
C.221+15%x-22x=5D.221+15%x-22x=112
6.(2023·福建莆田·校考模拟预测)某科考队分成两支小队进入沙漠采集环境信息,第一小队于早晨8:00进入沙漠,并于8:20在一颗枯树旁做了标记,此时第二小队进入沙漠,走到8:35时正好经过枯树看到了标记,已知两支小队在距离出发点4704m的位置相遇,设第一小队的平均速度是vm/s,则符合题意的方程是( )
A.4704v=4704÷1200v900+1200B.4704v=4704÷900v1200+1200
C.4704v=4704÷1200v900+900D.4704v=4704÷900v1200+900
7.(2023·安徽·模拟预测)随着科研的投入,某种药品的价格连续两次降价,价格由原来每盒a元下降到b元.设平均下降率为x,则a,b,x满足的关系式为( )
A.a=b(1+x)2B.b=a(1-x)2C.a=b1+2xD.b=a1-2x
8.(2023·广西玉林·统考一模)我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了一个问题:“直田积八百六十四步,只云长阔共六十步,问长与阔几何?”其大意是:矩形面积是864平方步,其中长与宽的和为60步,问长与宽各多少步?若设长为x步,则下列符合题意的方程是( )
A.60-xx=864B.60-x2⋅60+x2=864
C.60+xx=864D.30+x30-x=864
题型02 利用方程方程(组)与不等式(组)解决实际问题
类型一 图形信息问题
9.(2023·江苏盐城·统考模拟预测)一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车14h后,继续按原速驶向乙地,两车距甲地的路程ykm与慢车行驶时间xh之间的函数图象如图所示,请结合图象解答下列问题:
(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;
(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;
(3)慢车出发多长时间,两车相距120km
10.(2023·天津河西·天津市新华中学校考三模)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知小强家、书店、健身馆依次在同一条直线上,健身馆距小强家2km,书店距小强家1km.周末小强从健身馆运动后,匀速步行20min到达家门口时,突然想起忘记买书,于是立即赶往书店,匀速步行8min到达书店,停留了6min购书,又匀速步行10min后再次返回家中.给出的图象反映了这个过程中小强离家的距离y(km)与离开健身馆后的时间x(min)之间的对应关系.
请根据相关信息解答下列问题:
(1)填表:
(2)填空:
①书店到健身馆的距离为______km;
②小强从家到书店的速度为______km/min;
③小强从书店返回家的速度为______km/min;
④当小强离家的距离为0.8km时,他离开健身馆的时间为_____min.
(3)当20≤x≤44时,请直接写出y关于x的函数解析式.
11.(2023·河北唐山·统考二模)如图,某景区内的环行路是矩形ABCD.景区的北门M与南门N之间有一段小路MN仅供行人步行通过,且区域MNCD为正方形.现有P,Q两游览车分别从M和N同时出发,P车顺时针、Q车逆时针沿环形路ABCD连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度相同.设P、Q两车距北门M的最短距离分别为y1m,y2m(本题中最短距离指在环形路上距M的较短路程,例:在C处时距离为CD+DM,在B处时距离则为BA+AM),行驶的时间为tmin,y1,y2与t的函数图形如图所示.
(1)矩形ABCD的周长为______m,游览车的速度为______m/min;
(2)求AM的长;
(3)如图,求a,b的值及a≤t≤b时,y2与t的函数解析式;并直接写出E、F两点的纵坐标之差.
12.(2023·广西玉林·统考模拟预测)为了更好助推乡村振兴,今年水果上市期间,某单位驻村工作队立足本地特色,在打通为农服务“最后一公里”上主动作为,在村里成立村级供销合作社,帮助果农进行销售,该村水果月销售额y(万元),在成立村级供销合作社前是反比例函数图象的一部分,成立村级供销合作社后是一次函数图象的一部分.
(1)当1≤x≤4时,求y与x的关系式,并求出该种水果4月份的销售额;
(2)该村水果有多少个月的月销售额不超过90万元?
13.(2023·广东江门·江门市怡福中学校考一模)如图是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段PA是竖直高度为6米的平台,PO垂直于水平面,滑道分为两部分,其中AB段是双曲线y= 10x的一部分,BCD段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,且B点的竖直高度为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE为2米.
(1)求滑道BCD所在抛物线的解析式;
(2)求甲同学从点A滑到地面上D点时,所经过的水平距离;
(3)在建模实验中发现,为保证滑行者的安全,滑道BCD落地点D与最高点B连线与水平面夹角应不大于45°,且由于实际场地限制,OPOD ≥ 12,请直接写出OD长度的取值范围.
14.(2023·内蒙古包头·二模)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段(即:当10≤x≤24时,大棚内的温度y(℃)是时间x(h)的反比例函数),已知点A坐标为0,10.
请根据图中信息解答下列问题:
(1)当0≤x≤5时,求大棚内的温度y与时间x的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大橱内的温度低于10℃时,蔬菜会受到伤害,问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
类型二 方案选择问题
15.(2023·广东深圳·校考模拟预测)“后疫情时代”经济复苏,越来越多的人选择在假期外出旅游,五一假期为旅游旺季,深圳某景区为方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.
(1)求弧形椅和条形椅的单价分别是多少元;
(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进200张休闲椅,并保证至少增加800个座位.求如何安排购买方案最节省费用、最低费用是多少元.
16.(2023·浙江·模拟预测)某礼品经销商在春节前购进了甲、乙两种规格的礼品盒200盒,共花费了17800元.已知甲、乙两种规格的礼品盒的进价和售价如下表:
(1)该礼品经销商购进甲、乙两种规格的礼品盒各多少盒?
(2)由于市场供不应求,该礼品经销商计划再购进两种礼品盒共50盒,而此次投入不超过5000元,为使得获利最大,应如何进货.
17.(2023·浙江温州·校联考二模)某地移动公司提供的流量套餐有三种,如表所示,x表示每月上网流量(单位:GB),y表示每月的流量费用(单位:元),三种套餐对应的y关于x的关系如图所示:
(1)当x>5时,求A套餐费用yA的函数表达式.
(2)当每月消耗流量在哪个范围内时,选择C套餐较为划算.
(3)小红爸妈各选一种套餐,计划2人每月流量总费用控制在150元以内(包括150元),请为他们设计一种方案使总流量达到最并完成下表,
18.(2022·湖北黄冈·校考模拟预测)习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:
(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?
(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y=13x3-80x2+5040x(0≤x
相关试卷
这是一份中考数学第一轮复习专题03 函数、方程及不等式的应用(讲练)(原卷版),共40页。试卷主要包含了考情分析,知识建构,问人数,解答题等内容,欢迎下载使用。
这是一份中考数学第一轮复习专题03 函数、方程及不等式的应用练习(解析版),共102页。试卷主要包含了图形信息问题,方案选择问题,商品利润问题,行程问题,销售盈亏问题,工程问题,几何问题,古代问题等内容,欢迎下载使用。
这是一份专题03 函数、方程及不等式的应用-2025年中考数学一轮复习讲练,文件包含专题03函数方程及不等式的应用原卷版docx、专题03函数方程及不等式的应用解析版docx等2份试卷配套教学资源,其中试卷共134页, 欢迎下载使用。