年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析)

    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析)第1页
    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析)第2页
    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析)

    展开

    这是一份2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(附解析),共21页。
    答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.
    祝各位考生考试顺利!
    第Ⅰ卷
    注意事项:
    1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
    2.本卷共9小题,每小题5分,共45分.
    参考公式:
    ·球的体积公式,其中表示球的半径.
    一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.已知集合,,则( )
    A.B.
    C.,或D.
    【正确答案】D
    【知识点】并集的概念及运算、解不含参数的一元二次不等式、具体函数的定义域
    【思路】求出集合,集合,再利用并集定义求出.
    【详解】因为集合,集合,
    所以.
    故选:D.
    2.“直线与圆相交”是“”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    【正确答案】A
    【知识点】判断命题的充分不必要条件、由直线与圆的位置关系求参数
    【思路】根据点到直线的距离公式,结合充分不必要条件的定义即可求解.
    【详解】若直线与圆相交,则圆心到直线的距离满足,故,
    由于能推出,
    当不能得到,
    故“直线与圆相交”是“”的充分不必要条件,
    故选:A
    3.函数在的图像大致为( )
    A.B.
    C.D.
    【正确答案】D
    【知识点】函数基本性质的综合应用、函数图像的识别
    【思路】根据函数奇偶性排除B,根据函数零点排除A,当时,由,排除C选项,即可得到结果.
    【详解】,故为奇函数,函数图像关于原点中心对称,排除B选项;令,则或,故在上有三个零点,排除A选项;
    当时,,排除C选项.
    故选:D.
    4.某校为了了解学生的体能情况,于6月中旬在全校进行体能测试,统计得到所有学生的体能测试成绩均在内.现将所有学生的体能测试成绩按分成三组,绘制成如图所示的频率分布直方图.若根据体能测试成绩采用按比例分层随机抽样的方法抽取20名学生作为某项活动的志愿者,则体能测试成绩在内的被抽取的学生人数为( )
    A.4B.6C.8D.10
    【正确答案】A
    【知识点】由频率分布直方图计算频率、频数、样本容量、总体容量
    【思路】根据题意,结合给定的频率分布直方图中的数据,即可求解.
    【详解】根据题意得,体能测试成绩在内的被抽取的学生人数为.
    故选:A.
    5.记为等差数列的前项和,若,,则( )
    A.B.C.D.
    【正确答案】A
    【知识点】求等差数列前n项和、等差数列通项公式的基本量计算、利用等差数列的性质计算、等差数列前n项和的基本量计算
    【思路】由已知利用等差数列的通项公式和前项和公式求基本量,然后求出,
    再结合等差数列前项和公式和等差数列的性质求解即可.
    【详解】设等差数列的公差为,则,
    解得,所以,
    所以.
    故选.
    6.已知,则( )
    A.B.C.D.
    【正确答案】C
    【知识点】比较指数幂的大小、比较对数式的大小
    【思路】根据指数函数和对数函数的单调性比较即可.
    【详解】由指数函数单调性可知,,
    由对数函数单调性可知,,
    所以,所以,
    故选:C.
    7.如图,在正三棱柱中,,直线与平面所成角的正切值为,则正三棱柱的外接球的半径为( )

    A.2B.C.D.
    【正确答案】D
    【知识点】球的截面的性质及计算、多面体与球体内切外接问题、证明线面垂直、由线面角的大小求长度
    【思路】根据给定条件,利用线面角的正切求出,再求出正三棱柱的外接球半径.
    【详解】在正三棱柱中,取的中点,连接,则,
    由平面,平面,得,又,
    平面,因此平面,是直线与平面所成的角,
    则,由,得,而,则,,
    因此正三棱柱的外接球球心到平面的距离,
    而的外接圆半径,所以正三棱柱的外接球的半径.
    故选:D

    8.已知函数的最小正周期是,把它图象向右平移个单位后得到的图象所对应的函数为奇函数.现有下列结论:
    ①函数的图象关于直线对称.;②函数的图象关于点对称;
    ③函数在区间上单调递减;④函数在上有个零点.
    正确的结论是( )
    A.①②③B.①②④C.②③D.②
    【正确答案】A
    【知识点】求sinx型三角函数的单调性、结合三角函数的图象变换求三角函数的性质、求正弦(型)函数的对称轴及对称中心、正弦函数图象的应用
    【思路】利用函数的最小正周期以及平移后的函数的奇偶性求出、的值,可求得函数的解析式,利用正弦型函数的对称性可判断①②的正误;利用正弦型函数的单调性可判断③的正误;当时,解方程可判断④的正误.
    【详解】因为函数的最小正周期为,则,则,
    将函数的图象向右平移个单位后得到函数,
    由于函数为奇函数,则,可得.
    ,,则,.
    对于命题①,,①正确;
    对于命题②,,②正确;
    对于命题③,当时,,
    所以,函数在区间上单调递减,③正确;
    对于命题④,当时,,
    由可得或,解得或,④错误.
    故选:A.
    【总结】本题考查正弦型函数的对称性、单调性与零点个数的判断,同时也考查了利用正弦型函数的周期和图象变换求函数解析式,考查计算能力,属于中等题.
    9.已知双曲线,过原点O任作一条直线,分别交曲线两支于点P,Q(点P在第一象限),点F为E的左焦点,且满足,,则E的离心率为( )
    A.B.C.D.2
    【正确答案】A
    【知识点】求双曲线的离心率或离心率的取值范围
    【思路】利用右焦点,得到四边形为平行四边形,然后根据双曲线定义,可得的值且,最后利用勾股定理,可得结果.
    【详解】设双曲线右焦点为,
    由题意可知:P关于原点的对称点为Q,
    则,
    四边形为平行四边形,
    则,,
    由,
    根据双曲线的定义,
    ,,,

    在中,,,,
    ,整理得,
    则双曲线的离心率,
    故选:A.
    【总结】本题主要考查双曲线的离心率,难点在于可以得到四边形为平行四边形,属中档题.
    10.已知函数,函数,若方程恰好有4个实数根,则实数的取值范围是( )
    A.B.C.D.
    【正确答案】D
    【知识点】根据函数零点的个数求参数范围
    当时,,求导,由可得,当时,,当时,,故在上单调递增,在上单调递减,然后在同一坐标系中画出函数与曲线的图象求解.
    【详解】当时,,
    则,由,可得.
    当时,,当时,,
    故在上单调递增,在上单调递减.
    因此,在同一坐标系中画出函数与曲线的图象
    如图所示.
    若函数与恰好有4个公共点,
    则,即,
    解得.
    故选:D
    【总结】本题主要考查函数与方程问题,还考查了数形结合的思想和运算求解的能力,属于中档题.
    第Ⅱ卷
    注意事项:
    1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.
    2.本卷共11小题,共105分.
    二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
    11.已知为虚数单位,若,则 .
    【正确答案】/
    【知识点】共轭复数的概念及计算、复数的除法运算
    【思路】根据复数除法运算可化简得到,由共轭复数定义可得结果.
    【详解】,.
    故答案为.
    12.展开式中的常数项为 .
    【正确答案】135
    【知识点】求指定项的系数
    【思路】根据二项式展开式的通项特征,即可求解.
    【详解】展开式的通项为,
    令,所以常数项为,
    故135
    13.过点,且与直线相切于点的圆的方程为
    【正确答案】
    【知识点】由圆心(或半径)求圆的方程、由直线与圆的位置关系求参数
    【思路】由圆心与切点的连线与切线垂直得出圆心所在直线,设圆心坐标,利用圆心到圆上两个点距离相等建立等量关系,求得圆心,即可得到圆的方程
    【详解】因为圆心与切点连线与切线垂直,且,
    所以圆心和切点连线的斜率,
    所以圆心与的连线的直线方程为:,
    设圆心,则,即,
    解得,
    即圆心,所以,
    所以圆的方程为.

    14.袋子中有6个大小相同的小球,其中4个红球,2个白球.每次从袋子中随机摸出1个球,摸出的球不再放回,则两次都摸到红球的概率为 ;在第一次摸到红球的条件下,第二次摸到红球的概率为 .
    【正确答案】 / /
    【知识点】计算条件概率、计算古典概型问题的概率
    【思路】利用古典概型和条件概率公式计算即可.
    【详解】两次都摸到红球的概率为,
    第一次摸到红球的条件下,第二次摸到红球的概率,可通过缩小样本空间得出.
    故;
    15.在边长为1的正方形中,点为线段的三等分点,,则 ;为线段上的动点,为中点,则的取值范围为 .
    【正确答案】
    【知识点】用基底表示向量、利用数量积求参数、用坐标表示平面向量
    【思路】第一空:解法一:由图结合向量加减法可得答案;解法二:如图建立直角坐标系,由题意可得答案;第二空:在上一空解法二的基础上,设,结合题意可得关于的表达式 ,即可求得取值范围.
    【详解】第一空:解法一:因为,即,则,
    可得,所以;
    解法二:由题意可知:
    以为坐标原点建立平面直角坐标系,如图所示,
    则,
    可得,
    因为,则,所以;
    第二空:因为点在线段上,
    设,且为中点,则,
    可得,
    则,
    因为时函数递增,
    所以当时,取到最小值为;
    当时,取到最大值为;
    则的取值范围为,
    故;.
    三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.
    16.在中,角所对的边分别为,且.
    (1)求角的大小;
    (2)若,求的面积的最大值;
    (3)设是边上一点,为角平分线且,求的值.
    【正确答案】(1)(2)(3)
    【知识点】正弦定理边角互化的应用、余弦定理解三角形、逆用和、差角的正弦公式化简、求值、基本不等式求积的最大值
    【思路】(1)利用正弦定理与和角公式将题设等式化成,借助于三角形即可求得角;
    (2)由余弦定理得,利用基本不等式求得,即得的面积的最大值;
    (3)利用三角形角平分线定理推得,再由余弦定理推得,最后运用余弦定理即可求得的值.
    【详解】(1)由和正弦定理,
    可得,
    因,
    代入可得,
    因,则,故,
    又因,故;
    (2)由余弦定理,,
    因,,代入整理得:,
    由,当且仅当时等号成立,此时,
    而的面积,
    在中,由,,和,易得,
    即当时,的面积的最大值为;
    (3)
    如图,因平分,且,则,即,
    在中,由余弦定理,,
    即得,则,
    故.
    17.在三棱锥中,和是边长为的等边三角形,,是中点,是中点.
    (1)求证:平面平面;
    (2)求直线与平面所成角的正弦值的大小;
    (3)在棱上是否存在一点,使得的余弦值为?若存在,指出点在上的位置;若不存在,说明理由.
    【正确答案】(1)具体详情见解析;(2)(3)在棱上靠近点的三等分点处.
    【知识点】证明面面垂直、面面角的向量求法、线面角的向量求法
    【思路】(1)连接,,中,为中点,易得,同理可得:,进而利用面面垂直的判定定理,即可证明平面平面;
    (2)以为原点,以方向分别为,,轴正方向建立空间直角坐标系,求得平面的一个法向量为,利用向量的夹角公式,即可求解线面角的正弦值;
    (3)设得,
    再求得平面的一个法向量为和面的一个法向量为,利用向量的夹角公式,求解的值,从而确定点的位置.
    【详解】(1)
    证明:连接,,
    中,为中点,易得且.
    同理可得:,,
    又∵,∴,
    ∴,又∵,平面,
    ∴平面,又∵平面,
    ∴平面平面.
    (2)
    以为原点,以方向分别为,,轴正方向建立空间直角坐标系,
    得,,,,,
    设平面的一个法向量为,则有,,
    ,设直线与面所成的角为,
    则.
    (3)设在棱上存在点,设
    设平面的一个法向量为
    则有,且,取,,,
    ∴,
    ∵平面,
    ∴设面的一个法向量为.
    设面与面所成二面角为,

    解得:或(舍),∴.
    所以存在点且当在棱上靠近点的三等分点处,满足题意.
    18.已知椭圆的长轴长是,为右顶点,,,,是椭圆上异于顶点的任意四个点,当直线经过原点时,直线和的斜率之积为.
    (1)求椭圆的方程;
    (2)当直线和的斜率之积为定值时,直线是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.
    【正确答案】(1)(2)直线过定点
    【知识点】椭圆中的直线过定点问题、椭圆中的定值问题
    【思路】(1)由已知,设点,坐标,结合斜率乘积可得,即可得椭圆方程;
    (2)①当直线斜率不存在时,设直线方程及点,坐标,结合,解方程可得直线方程;②当直线斜率存在时,可设直线方程为,联立直线与椭圆方程,结合韦达定理与斜率公式列方程,化简可得或,代入直线方程可得解.
    【详解】(1)由已知,即,所依椭圆方程为,
    当直线过原点时,设,则,所以,
    所以,又,
    所以,,
    所以,则,
    所以椭圆方程为;
    (2)
    ①当直线斜率不存在时,设直线方程为,点,(),
    则,,且,即,
    所以,解得,
    即此时直线方程为;
    ②当直线斜率存在时,由题可设直线方程为,舍Mx1,y1,Nx2,y2,
    联立直线与椭圆方程得,
    则,即,
    且,,
    又,,
    则,
    即,
    即,
    化简可得,解得或,
    当时,直线方程为y=kx−2k=kx−2,过点,不成立;
    当时,直线方程为,过定点;
    综上所述直线恒过定点.
    19.在数列中,,都有,,成等差数列,且公差为.
    (1)求,,,;
    (2)求数列的通项公式;
    (3)是否存在,使得,,,成等比数列.若存在,求出的值;若不存在,说明理由.
    【正确答案】(1)3;5;9;13(2)(3)存在,
    【知识点】由递推关系式求通项公式、等比中项的应用、根据数列递推公式写出数列的项
    【思路】(1)根据,,成等差数列,公差为2;,,成等差数列,公差为4求解即可;
    (2)由题意,,再分与两种情况求解即可;
    (3)根据等比中项的性质,结合通项公式求解即可.
    【详解】(1)由题意,,,成等差数列,公差为2;,,成等差数列,公差为4.
    则,,,.
    (2)由题意,.
    当,时,

    且满足上式,所以当为奇数时,.
    当时,.
    所以
    (3)存在时,使得,,,成等比数列
    证明如下:
    由(2)可得,,,
    假设,,成等比数列,
    则,
    化简得,所以,即,
    此时,所以当时,,,,成等比数列.
    20.已知函数.
    (1)若,求函数的极值;
    (2)讨论的单调性;
    (3)若是的两个极值点,证明.
    【正确答案】(1)极小值为,无极大值;
    (2)具体详见解析;(3)证明见解析;
    【知识点】利用导数研究不等式恒成立问题、含参分类讨论求函数的单调区间、求已知函数的极值、函数单调性、极值与最值的综合应用
    【思路】(1)求出,分析函数单调性可得函数极值;
    (2)根据对参数进行分类讨论,分析出的正负,即可得出函数的单调区间;
    (3)结合(2)的分析可得,结合韦达定理可得,要证,可转化为,即证明,令,构造函数,利用导数研究在上的单调性即可得证.
    【详解】(1)当时,,定义域为;
    所以,
    令,解得,可得在上单调递增;
    令,解得,可得在上单调递减;
    所以当时,取得极小值为,无极大值;
    (2)由题意可得,
    当时,,方程的判别式,
    解方程可得,其中;
    令可得或(舍),
    即在区间上单调递增;
    令可得,
    所以在区间上单调递减;
    当时,,
    令可得,即在区间上单调递增;
    令可得,所以在区间上单调递减;
    当时,,方程的判别式,
    若,即时,恒成立,,此时在区间上单调递减;
    若,即时,方程有两个不相等的实数根,
    即,其中;
    令可得或,
    即可得在区间,上单调递增;
    令可得,
    所以在区间上单调递减;
    综上可得,当时,在区间上单调递增,在区间上单调递减;
    当时, 在区间上单调递增,在区间上单调递减;
    当时,在区间,上单调递增,在区间上单调递减;
    当时,在区间上单调递减;
    (3)由题意可得是方程的两实数根;
    因为是的两个极值点,由(2)可得,且,
    又,
    要证,
    只需证明,
    即证明,
    令,则需证明,
    令函数,
    则,
    所以函数在上的单调递减,可得,
    故,
    又,可得,故;
    所以.
    【总结】关键点点睛:本题第(3)问关键在于利用和韦达定理代换得到只需证明,从而构造函数可得证明结论.

    相关试卷

    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(含解析):

    这是一份2024-2025学年天津市和平区高三上册期末数学模拟检测试卷(含解析),共26页。

    2024-2025学年天津市和平区高三上册期末数学模拟检测试卷:

    这是一份2024-2025学年天津市和平区高三上册期末数学模拟检测试卷,共5页。

    2024-2025学年天津市和平区高三上册第二次月考数学检测试卷:

    这是一份2024-2025学年天津市和平区高三上册第二次月考数学检测试卷,共4页。试卷主要包含了 已知 a=30, 已知圆 C, 设 F1,F2 是双曲线 C等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map