所属成套资源:中考数学二轮培优训练 (2份,原卷版+解析版)
中考数学二轮培优训练第20讲 梯形中的分类讨论(2份,原卷版+解析版)
展开
这是一份中考数学二轮培优训练第20讲 梯形中的分类讨论(2份,原卷版+解析版),文件包含中考数学二轮培优训练第20讲梯形中的分类讨论原卷版doc、中考数学二轮培优训练第20讲梯形中的分类讨论解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
梯形的分类讨论题多见于各类压轴题中,由于这类题目都与图形运动有关,需要学生具有一定的想象能力、分析能力和运算能力.
梯形的主要特征是两底平行,特殊梯形又可分为等腰梯形和直角梯形两大类.常见题型为在直角坐标平面内已知三点求第四个点,抓住梯形两底平行的特征,对应的一次函数的解析式的k相等而B不相等.
若是等腰梯形,常需添设辅助线,过上底的两个顶点作下底的垂线,构造两个全等的直角三角形;
若是直角梯形,则需联结对角线或过上底的一顶点作下底的高构造直角三角形
【多题一解】【一题多解】
一、解答题
1.(2021·福建福州·统考一模)如图,直角梯形ABCD中,.点E为线段DC的中点,动点P从点A出发,以每秒1个单位的速度沿折线A→B→C向点C运动,设点P的运动时间为t.
(1)点P在运动过程中,BP=_________________;(用含t的代数式表示)
(2)点P在运动过程中,如果以D、P、E为顶点的三角形为等腰三角形,求t的值;
(3)当点P运动到线段BC上时,过点P作直线LDC,与线段AB交于点Q,使四边形DQPE为直角梯形,求此时直角梯形DQPE与直角梯形ABCD面积之比.
【答案】(1)丨8-t丨
(2)3或或12
(3)或
【分析】(1)分点P在AB上运动时和点P在BC上运动时列出代数式即可;
(2)分DE=DP、DP=PE、DE=PE情况求解即可;
(3)分∠EDQ=∠DQP=90°时和∠DEP=∠EPQ=90°时两种情况,利用相似三角形的判定与性质求解即可.
(1)
解:当点P在AB上运动时, BP=AB-AP=8-t;
当点P在BC上运动时BP=t-8,
故答案为:丨8-t丨;
(2)
解:过D作DH⊥BC于H,连接EH,则∠DHC=∠DHB=90°,
∵AD∥BC,∠DAB=90°,
∴∠ABC=∠DAB=90°=∠DHB,
∴四边形ABHD为矩形,
∴DH=AB=8,BH=AD=4,DH∥AB,∠ADH=90°,
则CH=BC-BH=6,
在Rt△DHC中,,
∵E为CD的中点,
∴DE=CE=EH=CD=5,
①当DE=DP时,DP=5,点P在AB上,
在Rt△ADP中,,∴t=3;
②当DP=PE时,点P在AB上,取DH的中点F,连接EF并延长交AB于Q,
又∵E为CD的中点,
∴EF= CH=3,EF∥CH,
∴∠CHD=∠EFD=∠DFQ=90°,则四边形AQFD为矩形,
∴FQ=AD=4,∠AQE=90°,AQ=DF=4,
在Rt△ADP中,DP2=AD2+AP2=16+t2,
在Rt△EPQ中,EQ=EF+FQ=7,PQ=丨t-4丨,
∴PE2=EQ2+PQ2=49+(t-4)2,
∴16+t2=49+(t-4)2,
解得:t=<8,故P不可能在BC上;
③当DE=PE时,PE=5,∵5<7,∴点P在BC上,
∵EH=DE=5,
∴当P运动到H处时,有DE=PE,此时t=8+4=12;
综上,满足条件的t值为3或或12;
(3)
解:如图,当∠EDQ=∠DQP=90°时,四边形DQPE为直角梯形,
过D作DH⊥BC于H,
由(2)中知,DH=8,CH=6,DE=5,CD=10,∠ADH=∠CHD=90°,
∵∠ADQ+∠QDH=∠CDH+∠QDH=90°,
∴∠ADQ=∠CDH,又∠A=∠CHD=90°,
∴△ADQ∽△HDC,
∴即,
∴AQ=3,DQ=5,则BQ=AB-AQ=8-3=5,
∵PQ∥DC,
∴∠HCD=∠BPQ,又∠CHD=∠B=90°,
∴△CDH∽△PQB,
∴即,
∴PQ=,
∴,
如图,当∠DEP=∠EPQ=90°时,四边形DQPE为直角梯形,
由(2)中知,DH=8,CH=6,CE=5,CD=10, ∠CHD=90°,
∵∠C=∠C,∠CEP=∠CHD=90°,
∴△EPC∽△HDC,
∴即,
∴EP= ,CP= ,则PB=BC-CP=10-=,
∵△CDH∽△PQB,
∴即,
∴PQ=,
,
综上,直角梯形DQPE与直角梯形ABCD面积之比为或.
【点睛】本题考查四边形的动点问题,涉及相似三角形的判定与性质、矩形的判定与性质、勾股定理、等腰三角形的性质、直角三角形斜边上的中线性质、直角梯形的性质等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键,计算量较大,需要细心计算.
2.(2021·上海·八年级期末)如图,在等腰梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=6cm.点P从A点出发,以2cm/s的速度沿AB向B点运动(运动到B点即停止);点Q从C点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.
(1)求梯形ABCD的高和∠A的度数;
(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)梯形ABCD的高为cm,∠A=60°
(2)
(3)存在为时,使四边形的面积是梯形面积的一半
【分析】(1)过D作DE⊥AB于E,过C作CF⊥AB于F,证Rt△ADE≌Rt△BCF(HL),得AE=BF=3(cm),再证∠ADE=30°,则∠A=60°,然后由勾股定理求出DE即可;
(2)过D作DE⊥AB于E,过C作CF⊥AB于F,当PQ将梯形ABCD分成两个直角梯形时,四边形APQD是直角梯形,则四边形DEPQ为矩形,得DQ=EP=2-t,再由AP=AE+EP,得2t=3+2-t,即可求解;
(3)求出S梯形ABCD=15(cm2),分两种情况:①若点Q在CD上,即0≤t≤2;②若点Q在AD上,即2<t≤4;分别由面积关系得出方程,解方程即可.
(1)
解:过D作DE⊥AB于E,过C作CF⊥AB于F,如图1所示:
∵四边形ABCD是等腰梯形,
∴AD=BC,AB∥CD,
∴DE⊥CD,CF⊥CD,
∴∠DEF=∠CFE=∠CDE=90°,
∴四边形CDEF是矩形,
∴DE=CF,DC=EF=2cm,
在Rt△ADE和Rt△BCF中,
,
∴Rt△ADE≌Rt△BCF(HL),
∴AE=BF,
∴AE=BF=(AB-EF)=×(8-2)=3(cm),
∵AD=6cm,
∴AE=AD,
∴∠ADE=30°,
∴∠A=60°,
DE=(cm),
∴梯形ABCD的高为cm;
(2)
解:过D作DE⊥AB于E,过C作CF⊥AB于F,如图2所示:
同(1)得:四边形CDEF是矩形,
当PQ将梯形ABCD分成两个直角梯形时,四边形APQD是直角梯形,则四边形DEPQ为矩形,
∵CQ=t,
∴DQ=EP=2-t,
∵AP=AE+EP,
∴2t=3+2-t,
解得:t=;
(3)
解:存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,理由如下:
∵S梯形ABCD=(8+2)×3=15(cm2),
当S四边形PBCQ=S梯形ABCD时,
①若点Q在CD上,即0≤t≤2,如图3所示:
则CQ=t,BP=8-2t,
S四边形PBCQ=(t+8-2t)×3=,
解得:t=3(不合题意舍去);
②若点Q在AD上,即2<t≤4,
过点Q作HG⊥AB于G,交CD的延长线于H,如图4所示:
则AQ=AD+DC-t=6+2-t=8-t,
在Rt△AGQ中,∠A=60°,
∴∠AQG=90°-60°=30°,
∴AG=AQ,
∴QG=,
同理:QH=DQ=(8-8+t-2)=(t-2),
∵S四边形PBCQ=S梯形ABCD,
∴S△APQ+S△CDQ=S四边形PBCQ,
∴×2t×(8-t)+×2×(t-2)=,
整理得:t2-9t+17=0,
解得:t1=(不合题意舍去),t2=,
综上所述,存在t为s时,使四边形PBCQ的面积是梯形ABCD面积的一半.
【点睛】本题是四边形综合题目,考查了等腰梯形的性质、矩形的判定与性质、直角梯形的性质、全等三角形的判定与性质、含30°角的直角三角形的判定、勾股定理、一元二次方程等知识;本题综合性强,熟练掌握等腰梯形的性质和勾股定理,证明Rt△ADE≌Rt△BCF(HL)是解题的关键,属于中考常考题型.
3、如图,在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.
(1)求边的长;
(2)当为何值时,与相互平分;
(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?
图(15)
Cc
Dc
Ac
Bc
Qc
Pc
Ec
【解析】:(1)作于点,如图(3)所示,则四边形为矩形.
又2分
在中,由勾股定理得:
(2)假设与相互平分.由则是平行四边形(此时在上).
即解得即秒时,与相互平分.
(3)①当在上,即时,作于,则
即=[来源:Z#xx#k.Cm]
当秒时,有最大值为
②当在上,即时,=
易知随的增大而减小.故当秒时,有最大值为
综上,当时,有最大值为
4、在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.
(1)求的长. (2)当时,求的值.(3)试探究:为何值时,为等腰三角形.
【解析】:(1)如图①,过、分别作于,于,则四边形是矩形
∴在中,
在,中,由勾股定理得,
∴
(图①)
A
D
C
B
K
H
(图②)
A
D
C
B
G
M
N
(2)如图②,过作交于点,则四边形是平行四边形
∵∴∴∴
由题意知,当、运动到秒时,
∵∴又
∴∴即解得,
A
D
C
B
M
N
(图③)
(图④)
A
D
C
B
M
N
H
E
(3)分三种情况讨论:①当时,如图③,即∴
②当时,如图④,过作于
解法一:由等腰三角形三线合一性质得
在中,
又在中,
∴解得
∵
∴∴即∴
(图⑤)
A
D
C
B
H
N
M
F
③当时,如图⑤,过作于点.
解法一:(方法同②中解法一)
解得
解法二:
∵
∴
∴即∴
综上所述,当、或时,为等腰三角形
5、如图1,在平面直角坐标系中,开口向上的抛物线与x轴交于点A(-1,0)和点B(3, 0),D为抛物线的顶点,直线AC与抛物线交于点C(5, 6).
(1)求抛物线的解析式;
(2)点E在x轴上,且△AEC和△AED相似,求点E的坐标;
(3)若直角坐标系平面中的点F和点A、C、D构成直角梯形,且面积为16,试求点F的坐标.
图1
满分解答
(1)如图1,因为抛物线与x轴交于点A(-1,0)和点B(3, 0),设y=a(x+1)(x-3).
将点C(5, 6)代入y=a(x+1)(x-3),得12a=6.
解得.所以抛物线的解析式为.
(2)由,得顶点D的坐标为(1,-2).
由A(-1,0)、C(5, 6)、D(1,-2),得∠CAO=45°,∠DAO=45°,AC=,AD=.
因此不论点E在点A的左侧还是右侧,都有∠CAE=∠DAE.
图2 图3
如果△CAE∽△DAE,那么它们全等,这是不可能的.
如图2,图3,如果△CAE∽△EAD,那么AE2=AC·AD=.
所以AE=.所以点E的坐标为,或.
(3)因为∠CAD=90°,因此直角梯形存在两种情况.
①如图4,当DF//AC时,由,得.
解得DF=.此时F、D两点间的水平距离、竖直距离都是2,所以F(3,0).
②如图5,当CF//AD时,由,得.
解得CF=.此时F、C两点间的水平距离、竖直距离都是,所以F.
图4 图5
6、如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
图1
思路点拨
1.如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段.
2.△AOB与△COD重叠部分的形状是四边形EFGH,可以通过割补得到,即△OFG减去△OEH.
3.求△OEH的面积时,如果构造底边OH上的高EK,那么Rt△EHK的直角边的比为1∶2.
4.设点A′移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示.
满分解答
(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,
得 解得,,. 所以.
(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.
直线OC的解析式为,设点P的坐标为,那么.
解方程,得,.
x=2的几何意义是P与C重合,此时梯形不存在.所以.
图2 图3
(3)如图3,△AOB与△COD重叠部分的形状是四边形EFGH,作EK⊥OD于K.
设点A′移动的水平距离为m,那么OG=1+m,GB′=m.
在Rt△OFG中,.所以.
在Rt△A′HG中,A′G=2-m,所以.
所以.
在Rt△OEK中,OK=2 EK;在Rt△EHK中,EK=2HK;所以OK=4HK.
因此.所以.
所以.
于是.
因为0<m<1,所以当时,S取得最大值,最大值为.
7、已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N. 将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.
图1 图2
思路点拨
1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.
2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO的中点.[来源:学.科.网]
满分解答
(1)设抛物线的解析式为,代入A(2,0)、C(0,12) 两点,得 解得
所以二次函数的解析式为,顶点P的坐标为(4,-4).
(2)由,知点B的坐标为(6,0).
假设在等腰梯形OPBD,那么DP=OB=6.设点D的坐标为(x,2x).
由两点间的距离公式,得.解得或x=-2.
如图3,当x=-2时,四边形ODPB是平行四边形.
所以,当点D的坐标为(,)时,四边形OPBD为等腰梯形.
图3 图4 图5
(3)设△PMN与△POB的高分别为PH、PG.
在Rt△PMH中,,.所以.
在Rt△PNH中,,.所以.
① 如图4,当0<t≤2时,重叠部分的面积等于△PMN的面积.此时.
②如图5,当2<t<4时,重叠部分是梯形,面积等于△PMN的面积减去△P′DC的面积.由于,所以.
此时.
8、如图1,在平面直角坐标系中,开口向上的抛物线与x轴交于点A(-1,0)和点B(3, 0),D为抛物线的顶点,直线AC与抛物线交于点C(5, 6).
(1)求抛物线的解析式;
(2)点E在x轴上,且△AEC和△AED相似,求点E的坐标;
(3)若直角坐标系平面中的点F和点A、C、D构成直角梯形,且面积为16,试求点F的坐标.
图1
思路点拨
1.由A、C、D三点的坐标,可以得到直线CA、直线DA与x轴的夹角都是45°,因此点E不论在点A的左侧还是右侧,都有∠CAE=∠DAE.因此讨论△AEC和△AED相似,要分两种情况.每种情况又要讨论对应边的关系.
2.因为∠CAD是直角,所以直角梯形存在两种情况.
满分解答
(1)如图1,因为抛物线与x轴交于点A(-1,0)和点B(3, 0),设y=a(x+1)(x-3).
将点C(5, 6)代入y=a(x+1)(x-3),得12a=6.
解得.所以抛物线的解析式为.
(2)由,得顶点D的坐标为(1,-2).
由A(-1,0)、C(5, 6)、D(1,-2),得∠CAO=45°,∠DAO=45°,AC=,AD=.
因此不论点E在点A的左侧还是右侧,都有∠CAE=∠DAE.
图2 图3
如果△CAE∽△DAE,那么它们全等,这是不可能的.
如图2,图3,如果△CAE∽△EAD,那么AE2=AC·AD=.
所以AE=.所以点E的坐标为,或.
(3)因为∠CAD=90°,因此直角梯形存在两种情况.
①如图4,当DF//AC时,由,得.
解得DF=.此时F、D两点间的水平距离、竖直距离都是2,所以F(3,0).
②如图5,当CF//AD时,由,得.
解得CF=.此时F、C两点间的水平距离、竖直距离都是,所以F.
图4 图5
9、如图1,在平面直角坐标系中,直线y=x+2与x轴交于点A,点B是这条直线上第一象限内的一个点,过点B作x轴的垂线,垂足为D,已知△ABD的面积为18.
(1)求点B的坐标;
(2)如果抛物线经过点A和点B,求抛物线的解析式;
(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上的一点,过点P作PQ//AC交x轴于点Q,如果点Q在线段AH上,且AQ=CP,求点P的坐标.
图1
思路点拨
1.△ABD是等腰直角三角形,根据面积可以求得直角边长,得到点B的坐标.
2.AQ=CP有两种情况,四边形CAQP为平行四边形或等腰梯形.[来源:学|科|网Z|X|X|K]
平行四边形的情况很简单,等腰梯形求点P比较复杂,于是我们要想起这样一个经验:平行于等腰三角形底边的直线截两腰,得到一个等腰梯形和一个等腰三角形.
满分解答
(1)直线y=x+2与x轴的夹角为45°,点A的坐标为(-2, 0).
因为△ABD是等腰直角三角形,面积为18,所以直角边长为6.
因此OD=4.所以点B的坐标为(4, 6).
(2)将A(-2, 0)、B (4, 6)代入,
得 解得b=2,c=6.
所以抛物线的解析式为.
(3)由,得抛物线的对称轴为直线x=2,点C的坐标为(0, 6).
如果AQ=CP,那么有两种情况:
①如图2,当四边形CAQP是平行四边形时,AQ//CP,此时点P的坐标为(2, 6).
②如图3,当四边形CAQP是等腰梯形时,作AC的垂直平分线交x轴于点F,那么点P在FC上.
设点F的坐标为(x, 0),根据FA2=FC2列方程,得(x+2)2=x2+62.
解得x=8.所以OF=8,HF=6.
因此.此时点P的坐标为.
图2 图3
10、已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形.
①求点D的坐标;
②将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点E,若,求四边形BDEP的面积.
图1
思路点拨
1.这道题的最大障碍是画图,A、B、C、D四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.
2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D、P两点间的垂直距离等于7.
3.已知∠DPE的正切值中的7的几何意义就是D、P两点间的垂直距离等于7,那么点P向右平移到直线x=3时,就停止平移.
满分解答
(1)直线y=3x-3与x轴的交点为A(1,0),与y轴的交点为B(0,-3).
将A(1,0)、B(0,-3)分别代入y=ax2+2x+c,
得 解得
所以抛物线的表达式为y=x2+2x-3.
对称轴为直线x=-1,顶点为(-1,-4).
(2)①如图2,点B关于直线l的对称点C的坐标为(-2,-3).
因为CD//AB,设直线CD的解析式为y=3x+b,
代入点C(-2,-3),可得b=3.
所以点D的坐标为(0,3).
②过点P作PH⊥y轴,垂足为H,那么∠PDH=∠DPE.
由,得.
而DH=7,所以PH=3.
因此点E的坐标为(3,6).
所以.
图2 图3
11、如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
图1
思路点拨
1.如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段.
2.△AOB与△COD重叠部分的形状是四边形EFGH,可以通过割补得到,即△OFG减去△OEH.
3.求△OEH的面积时,如果构造底边OH上的高EK,那么Rt△EHK的直角边的比为1∶2.
4.设点A′移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示.
满分解答
(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,
得 解得,,. 所以.
(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.
直线OC的解析式为,设点P的坐标为,那么.
解方程,得,.
x=2的几何意义是P与C重合,此时梯形不存在.所以.
图2 图3
(3)如图3,△AOB与△COD重叠部分的形状是四边形EFGH,作EK⊥OD于K.
设点A′移动的水平距离为m,那么OG=1+m,GB′=m.
在Rt△OFG中,.所以.
在Rt△A′HG中,A′G=2-m,所以.
所以.
在Rt△OEK中,OK=2 EK;在Rt△EHK中,EK=2HK;所以OK=4HK.
因此.所以.
所以.
于是.
因为0<m<1,所以当时,S取得最大值,最大值为.
12、已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N. 将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.
图1 图2
思路点拨
1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.
2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO的中点.
满分解答
(1)设抛物线的解析式为,代入A(2,0)、C(0,12) 两点,得 解得
所以二次函数的解析式为,顶点P的坐标为(4,-4).
(2)由,知点B的坐标为(6,0).
假设在等腰梯形OPBD,那么DP=OB=6.设点D的坐标为(x,2x).
由两点间的距离公式,得.解得或x=-2.
如图3,当x=-2时,四边形ODPB是平行四边形.
所以,当点D的坐标为(,)时,四边形OPBD为等腰梯形.
图3 图4 图5
(3)设△PMN与△POB的高分别为PH、PG.
在Rt△PMH中,,.所以.
在Rt△PNH中,,.所以.
① 如图4,当0<t≤2时,重叠部分的面积等于△PMN的面积.此时.
②如图5,当2<t<4时,重叠部分是梯形,面积等于△PMN的面积减去△P′DC的面积.由于,所以.
此时.
相关试卷
这是一份中考数学二轮培优训练第23讲 几何图形面积中的分类讨论(2份,原卷版+解析版),文件包含中考数学二轮培优训练第23讲几何图形面积中的分类讨论原卷版doc、中考数学二轮培优训练第23讲几何图形面积中的分类讨论解析版doc等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份中考数学二轮培优训练第22讲 相似三角形中的分类讨论(2份,原卷版+解析版),文件包含中考数学二轮培优训练第22讲相似三角形中的分类讨论原卷版doc、中考数学二轮培优训练第22讲相似三角形中的分类讨论解析版doc等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份中考数学二轮培优训练第21讲 直角三角中的分类讨论(2份,原卷版+解析版),文件包含中考数学二轮培优训练第21讲直角三角中的分类讨论原卷版doc、中考数学二轮培优训练第21讲直角三角中的分类讨论解析版doc等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。