所属成套资源:人教版数学八年级上册期中复习专题(2份,原卷版+解析版)
人教版数学八年级上册期中复习 专题02 全等模型-一线三等角(K字)模型(2份,原卷版+解析版)
展开
这是一份人教版数学八年级上册期中复习 专题02 全等模型-一线三等角(K字)模型(2份,原卷版+解析版),文件包含人教版数学八年级上册期中复习专题02全等模型-一线三等角K字模型原卷版doc、人教版数学八年级上册期中复习专题02全等模型-一线三等角K字模型解析版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
模型1.一线三等角(K型图)模型(同侧型)
【模型解读】
在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】
同侧型一线三等角(常见):
锐角一线三等角 直角一线三等角(“K型图”) 钝角一线三等角
条件:+ CE=DE
证明思路:+任一边相等
例1.(2022·河南濮阳市·八年级期末)已知:D,A,E三点都在直线m上,在直线m的同一侧作,使,连接BD,CE.(1)如图①,若,,,求证;
(2)如图②,若,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.
例2.(2022·绵阳市·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.
例3.(2022秋·河北张家口·八年级校考期中)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.【解决问题】若点的运动速度与点的运动速度相等,当时,回答下面的问题:
(1);(2)此时与是否全等,请说明理由;(3)求证:;
【变式探究】若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.
例4.(2023·湖南岳阳·统考一模)如图,在ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=______°,∠AED=______°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.
模型2.一线三等角(K型图)模型(异侧型)
【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】
异侧型一线三等角:
锐角一线三等角 直角一线三等角 钝角一线三等角
条件:+ 任意一边相等
证明思路:+任一边相等
例1.(2023春·广西·七年级专题练习)问题1:在数学课本中我们研究过这样一道题目:如图1,∠ACB=90°,AC=BC,BE⊥MN,AD⊥MN,垂足分别为E、D.图中哪条线段与AD相等?并说明理由.
问题2:试问在这种情况下线段DE、AD、BE具有怎样的等量关系?请写出来,不需要说明理由.
问题3:当直线CE绕点C旋转到图2中直线MN的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由.
例2.(2022秋·河北承德·八年级统考期末)如图1一直角三角板,,,过点C的直线l不经过三角形内部,过点A、B作,,垂足分别为D,E.
(1)请你在图1中写出一对全等三角形:___________ (2)请证明你所写结论.
(3)尝试探究:若,;①图1中四边形的面积为:________(用含a,b的代数式表示,)
②图2中过点C的直线l经过三角形内部,其它不变,则四边形的面积为:___________(用含a,b的代数式表示,)
例3.(2023·江苏·八年级假期作业)在中,,直线经过点C,且于D,于E.
(1)当直线绕点C旋转到图1的位置时,求证:①;②.
(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线绕点C旋转到图3的位置时,试问具有怎样的等量关系?请写出这个等量关系,并加以证明.
课后专项训练
1.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于( )
A.3B.2C.D.
2.(2023·江苏·八年级假期作业)如图,在中,,分别过点B,C作过点A的直线的垂线BD,CE,垂足为D,E.若,求DE的长.
3.(2022秋·绵阳市八年级课时练习)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠A=90°,∠B=30°,点D,E分别在AB,BC上,且∠CDE=90°.当BE=2AD时,图1中是否存在与CD相等的线段?若存在,请找出并加以证明,若不存在,说明理由.小明通过探究发现,过点E作AB的垂线EF,垂足为F,能得到一对全等三角形(如图2),从而将解决问题.
请回答:(1)小明发现的与CD相等的线段是 .(2)证明小明发现的结论.
4.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
5.(2023春·上海·七年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,,,过点B作于点C,过点D作于点E.求证:.
[模型应用]如图2,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.
[深入探究]如图3,,,,连接,,且于点F,与直线交于点G.若,,则的面积为_____________.
6.(2022秋·广东广州·八年级校考阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系: .②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系 .(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.
7.(2023·上海浦东新·八年级校考期中)在中,,,点在直线上(,除外),的垂线与的垂线交于点,研究和的数量关系.(1)在探究,的关系时,运用“从特殊到一般”的数学思想,发现当点是的中点时,只需要取边的中点(如图),通过推理证明就可以得到的数量关系,请你按照这种思路直接写出和的数量关系:_______________。(2)当点是线段上(,除外)任意一点(其它条件不变),上面得到的结论是否仍然成立呢?证明你的结论;(3)点在线段的延长线上,上面得到的结论是否仍然成立呢?在下图中画出图形,并证明你的结论.
8.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
9.(2022·河南商丘市·九年级期末)如图(1),已知中,,;是过的一条直线,且,在的异侧,于,于.(1)求证:;(2)若直线绕点旋转到图(2)位置时(),其余条件不变,问与,的数量关系如何?请给予证明.(3)若直线绕点旋转到图(3)位置时(),其余条件不变,问与,的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线在不同位置时与,的位置关系.
10.(2023春·上海·七年级专题练习)已知为等腰三角形,,直线过点(不经过点),过点作于点,过点作于点.
(1)如图1,当点位于直线的同侧时,判断与的大小关系,并说明理由;
(2)如图2,若点位于直线的两侧,①(1)的结论是否还能成立,请说明理由;
②设与交于点,当时,判断与是否相等,并说明理由.
11.(2023春·上海·七年级专题练习)(1)观察理解:
如图1,∠ACB=90°,AC=BC,直线l过点C,点A,B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,求证:△AEC≌△CDB. (2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.
(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;
②如图4,直角梯形ABCD中,,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆时针旋转90°至DE,△AED的面积为 .
12.(2022·安徽·九年级期末)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
13.(2022秋·八年级课时练习)在综合实践课上,李老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰纸片中,,,将一块含30°角的足够大的直角三角尺(,)按如图所示放置,顶点在线段上滑动(点不与,重合),三角尺的直角边始终经过点,并与的夹角,斜边交于点.
(1)当时,______°;
(2)当等于何值时,?请说明理由;
(3)在点的滑动过程中,存在是等腰三角形吗?若存在,请求出夹角的大小;若不存在,请说明理由.
14.(2023·重庆江津·八年级统考期末)(1)问题:如图①,在四边形中,,是上一点,,.求证:;
(2)问题:如图②,在三角形中,,是上一点,,且.求的值.
15.(2023春·绵阳市·八年级专题练习)如图,线段AB=6,射线BG⊥AB,P为射线BG上一点,以AP为边做正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使得∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合),
(1)求证:△AEP≌△CEP;
(2)判断CF与AB的位置关系,并说明理由;
(3)△AEF的周长是否为定值,若是,请求出这个定值,若不是,请说明理由.
相关试卷
这是一份人教版八年级数学上册专题02全等模型-一线三等角(K字)模型(原卷版+解析),共45页。试卷主要包含了一线三等角,,易证等内容,欢迎下载使用。
这是一份中考数学专题练习14 全等与相似模型-一线三等角(K字)模型,文件包含中考数学14全等与相似模型-一线三等角K字模型教师版专题训练docx、中考数学14全等与相似模型-一线三等角K字模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
这是一份中考数学二轮复习几何专项练习:相似模型--一线三等角及“K”模型(2份打包,原卷版+解析版),文件包含中考数学二轮复习几何专项练习相似模型--一线三等角及“K”模型原卷版doc、中考数学二轮复习几何专项练习相似模型--一线三等角及“K”模型解析版doc等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。