所属成套资源:北师大版数学七上期末培优训练专题(2份,原卷版+解析版)
北师大版数学七上期末培优训练专题13 一元一次方程的应用(12大题型)(2份,原卷版+解析版)
展开
这是一份北师大版数学七上期末培优训练专题13 一元一次方程的应用(12大题型)(2份,原卷版+解析版),文件包含北师大版数学七上期末培优训练专题13一元一次方程的应用12大题型原卷版doc、北师大版数学七上期末培优训练专题13一元一次方程的应用12大题型解析版doc等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
1.用一元一次方程解决实际问题的一般步骤
列方程解应用题的基本思路为:问题方程解答.由此可得解决此类
题的一般步骤为:审、设、列、解、检验、答.
注意:
(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系;
(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;
(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;
(4)“解”就是解方程,求出未知数的值.
(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;
(6)“答”就是写出答案,注意单位要写清楚.
2 .建立书写模型常见的数量关系
1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长
2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
3.分析数量关系的常用方法
1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。
2)列表分析数量关系:当题目中条件较多,关系较复杂时,要列出表格,把已知量和未知量填入表格,利用表格进行分析。这种方法的好处在于把已知量和未知量“对号入座”,便于正确理解各数量之间的关系。
3)图解法分析数量关系:用图形表示题目中的数量关系,这种方法能帮助我们透彻地理解题意,并可直观形象的体会题意。在行程问题中,我们常常用此类方法。
题型1 分段计费问题
【解题技巧】总费用=未超标部分的费用+超标部分的费用。
已知费用求需判定的所属范围;若无法知道费用对应的具体范围时,需对其进行不同范围的分类讨论。
注:需审题仔细,看清计费标准是否有“超过部分”。
常见试题背景:水费、电费、气费、车费、纳税、社保医保体系等
1.(2022·福建·上杭县第三中学七年级阶段练习)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如:王女士家6月份用电420度,电费=180×0.6+220×0.7+20×0.9=280元,实行“阶梯价格”收费以后,居民用电__________千瓦时,其当月的平均电价每千瓦时恰好为0.65元.
2.(2022·海南鑫源高级中学八年级期中)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过10吨(含10吨)时,水价为每吨1.2元;每月超过10吨,超过部分按每吨1.8元收费.
(1)小黄家5月份用水15吨,应交水费多少元?
(2)该市某户6月份用水量为吨(x>10),应交水费为元,写出与之间的函数关系式;
3.(2022·浙江绍兴·一模)为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);
例如:某户用水量为35吨,则水费为(元).
(1)若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.(2)若该住户的用水量为x吨,应付水费为y元,求出y关于x的函数表达式.(3)小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.
4.(2022·辽宁大连·)下表是中国移动两种“G套餐”计费方式(月租费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)
(1)若某月小张主叫通话时间为260分钟,上网流量为4G,则他按方式一计费需________元,按方式二计费需_______元;(2)若某月小张按方式二计费需78元,主叫通话时间为320分钟,则小张该月上网流量为多少G?(3)若某月小张上网流量为G,是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.
5.(2022·浙江杭州·)为提高公民的社会责任感,保证每个纳税人公平纳税,调节不同阶层贫富差距,营造“纳税光荣”社会氛围,2019年我国实行新的《个人收入所得税征收办法》,将个人收入所得税的起征点提高至5000元(即全月个人收入所得不超过5000元的,免征个人所得税):个人收入超过5000元的,其超出部分称为“应纳税所得额”,国家对纳税人的“应纳税所得额”实行“七级超额累进个人所得税制度”该制度的前三级纳税标准如下:
(1)若某人1月份应纳税所得额为2900元,应纳税______元.
(2)若甲1月份应纳税所得额为x元且时,则甲应纳税__________元(用含x的代数式表示并化简).(3)若小明的爸爸1月份应纳税1390元,应纳税所得额为多少元?
6.(2022·浙江杭州·七年级期中)为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如表(注:水费按月结算,表示立方米):
例:某户居民5月份共用水,则应缴水费(元).
(1)若A居民家1月份共用水,则应缴水费_______元;
(2)若B居民家2月份共缴水费66元,则用水_________;
(3)若C居民家3月份用水量为(a低于,即),且C居民家3、4两个月用水量共,求3、4两个月共缴水费多少元?(用含a的代数式表示)
(4)在(3)中,当时,求C居民家3、4两个月共缴水费多少元?
题型2.方案优化问题
解题技巧:此类题型,一般会提供多种方案供选择,要求我们选出最合算的方案。解此类题型有2种思路。
思路1:分别求解出每种方案的最终费用,在比较优劣
思路2:求解出每种方案费用相同时的临界点,在根据临界点进行讨论分析。
1.(2022·仪征市实验初中七年级月考)现有甲、乙两个瓷器店,出售茶壶和茶杯,茶壶每只价格20元,茶杯每只5元,已知甲店制定的优惠方法是:买一只茶壶送一只茶杯,乙店为总价的 90%付款,现某单位需购买茶壶10只,茶杯若干只(不少于10只):
(1)当购买茶杯多少时,两种优惠方法一样?
(2)当购买40只茶杯时,请聪明的你去办这件事,你打算怎样购买更省钱?请通过计算说明理由.
2.(2022·山东青岛·八年级期末)某单位计划组织员工到某地旅游,参加旅游人数为40人,景点票价为每人30元,该景点规定满40人可购买八折的团队票,当天恰逢母亲节活动所有女士可打五折,但是不能同时享受两种优惠,若团队中有女士x人,请你帮助他们选择购票方案.
3.(2022·黑龙江·哈尔滨市第十七中学校期中)工厂制作大小两种长方体纸盒的尺寸如下:(单位:cm,接头处忽略不计)
(1)做一个大纸盒和一个小纸盒共用料多少平方厘米(用含m、n的代数式表示)?
(2)当,时,求制作一大一小两个纸盒共用料多少平方厘米?
(3)班级现计划购买大纸盒10个,小纸盒a个(),现从A,B两家商店了解到;两家商店的纸盒价格相同,大纸盒每个1.9元,小纸盒每个0.5元.A商店的优惠政策为:每买一个大纸盒赠送一个小纸盒,B商店的优惠政策为:大小纸盒都按八折优惠.那么学校到两家商店购买各应付款多少元(用含a的式子表示)?若规定只能选择一家商店购买,当a为何值时,到两家商店购买付款一样多?
4.(2022·黑龙江·鸡西市第四中学七年级期中)某中学全体教师集体出去参观考察,出发前去购买饮用水.学校附近有两家超市同一款矿泉水的单价均为1.5元,但优惠策略不同,A超市:一律打九折优惠;B超市:买5瓶赠送一瓶,如果需要购买120瓶矿泉水.(1)去哪家超市比较便宜?(2)比原价能便宜多少钱?
5.(2022·湖北武汉·七年级期末)如表中有两种移动电话计费方式:
其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.
(1)如果某月主叫时间500min,按方式二计费应交费______元;
(2)如果某月的主叫时间为350min时,两种方式收费相同,求a的值;
(3)在(2)的条件下,如果每月主叫时间超过400min,选择哪种方式更省钱?
6.(2022·湖南长沙七年级期末)明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.
(1)求单独到甲,乙文具店购买奖品,应各付多少元?
(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?
(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.
题型3 行程问题
解题技巧:行程问题总公式为:路程=速度×时间。
解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.
行程问题可分为四大类,不同类型的问题,在求解速度时有所不同,具体如下:
①相遇问题(或相向问题):
速度和×时间=总路程
②追及问题:
同时不同地:
速度差×时间=起点间的距离
同地不同时:
速度差×时间=先行路程
不同时不同地:
速度差×时间=起点间的距离+先行路程
③航行问题:(1)顺流速度=静水速度+水流速度;(2)逆流速度=静水速度-水流速度。
④火车过桥问题:火车过桥问题是一种特殊的行程问题,需要注意的是从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长。
1.(2022·福建泉州·七年级期末)轮船在河流中来往航行于A、两码头之间,顺流航行全程需小时,逆流航行全程需小时,已知水流速度为每小时,求、两码头间的距离.若设A、两码头间距离为,则所列方程为( )
A.B.C.D.
2.(2022·江苏·七年级单元测试)一个自行车队进行训练,训练时所有队员都以40km/h的速度前进,突然,6号队员以50km/h的速度独自行进,行进15km后掉转车头,仍以50km/h的速度往回骑,直到与其他队员会合.设6号队员从离队开始到与队员重新会合经过了xh,则x为( )
A.1.5B.0.75C.D.
3.(2022·四川广元·七年级期末)已知某铁路桥长1600米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米.
4.(2022·青岛市崂山七年级开学考试)一辆货轮往返于上下两个码头,逆流而上需用38小时,顺流而下需用32小时,若水流速度为8千米/时,则下列求两码头距离 的方程正确的是( )
A..B.C.D.
5.(2022·黑龙江·大庆市第四十四中学校期末)甲乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点13千米,已知甲车比乙车每小时多行3千米,A、B两城相距多少千米?
6.(2022·山西浑源·初一期末)七年级开展迎新年“迷你小马拉松健身跑”活动,跑步路线为学校附近一段笔直的的健身步道,全长4200米.甲、乙两名同学相约健身,二人计划沿预定路线由起点A跑向终点B.由于乙临时有事,于是甲先出发,3分钟后,乙才出发.已知甲跑步的平均速度为150米/分,乙跑步的平均速度为200米/分.根据题意解决以下问题:(1)求乙追上甲时所用的时间;(2)在乙由起点A到终点B的过程中,若设乙跑步的时间为m分,请用含m的代数式表示甲乙二人之间的距离;(3)当乙到达终点B后立即步行沿原路返回,速度降为50米/分.直接写出乙返回途中与甲相遇时甲离终点B的距离.
题型4工程问题
【解题技巧】我们常常把工作总量看做单位“1”,工作效率则用几分之几表示。在工程问题中,常常用“不同的对象所完成的工作量之和等于总工作量”这个关系来列写等式方程。
工程问题关键是把“一项工程”看成单位“1”,工作效率就可以用工作时间的倒数来表示。复杂的工程问题,往往需要设多个未知数,不要担心,在求解过程中,有一些未知数是可以约掉的。
1.(2022·内蒙古赤峰·七年级期末)整理一批图书,由一个人做要30小时完成,现计划由一部分人先做3小时,然后增加2人与他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做3小时,下列四个方程中正确的是( )
A. B. C. D.
2.(2022·河南·南阳市宛城区官庄镇第一初级中学七年级阶段练习)一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.若甲队每天比乙队多筑路50米,求这项工程共需筑路多少米?
3.(2022·河南三门峡·七年级期末)整理一批快递,如果由一个人单独做要用20小时,现先安排一部分人用1小时整理,随后又增加4人和他们一起做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么应先安排多少人整理这批快递?
4.(2022·吉林·东北师大附中七年级期中)[教材改编]改编华师版七年级下册数学教材第19页的部分内容.
问题3 课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:
(1)两人合作需要__________天完成.
(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?
[拓展]在问题3中,如果两人合作完成后共得报酬450元,工作量相同部分的报酬,师徒按3:2分配,余下的工作量所得报酬分配给该部分完成者,请直接写出师徒各得的报酬.
5.(2022·广西桂林·七年级期末)甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?
6.(2022·黑龙江)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.请你通过计算说明哪种方案省钱.
题型5 商品销售问题
【解题技巧】此类题型,需要我们找出利润和利润率之间的关系来列写等式方程。
实际售价=标价×打折率 利润=售价-成本(或进价)=成本×利润率
标价=成本(或进价)×(1+利润率)
注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.
在解决复杂商品销售问题时,通常会多设原价为a这个未知数,虽然在解题过程中,这个未知数会被消掉。但是,若不设这个未知数,许多关系就不好表达了。
1.(2022·山西·右玉县第三中学校七年级期末)把一批上衣按进价提高50%后作为售价,因打6折促销,售价相应调整为90元,打折后每件上衣( )
A.赚20元B.赚10元C.亏20元D.亏10元
2.(2022·重庆十八中两江实验中学九年级阶段练习)万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡 万盛茶飘香”为主题的采茶制茶、品茶赏茶、茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款年的新茶:清明香、云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量盒之比为::.由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为元、元、元,清明香的售价为每盒元,活动中将清明香的供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为,且云雾毛尖的销售单价不高于另外两种茶叶销售单价之和的,则滴翠剑茗的单价最低为______元.
3.(2022·甘肃·甘州中学七年级期末)元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件仍盈利20元,这批夹克每件的成本价是多少元?
4.(2022·山东·日照市北京路中学七年级期末)某商场经销的甲、乙两种商品,甲种商品每件进价40元,加价50%作为售价;乙种商品每件进价50元,售价80元.
(1)甲种商品每件售价为_____元,乙种商品每件的利润为 元,利润率为 %.
(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?
(3)按以下优惠条件,若小梅一次性购买乙种商品实际付款504元,则此次小梅在该商场最多购买乙种商品多少件?
5.(2022·辽宁·阜新蒙古族自治县蒙古贞初级中学七年级期末)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
(1)这两种水果各购进多少千克?
(2)若该水果店按售价销售完这批水果,获得的利润是多少元?
6.(2022·重庆实验外国语学校九年级二模)4月30日,某水果店购进了100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃进价的1.2倍,水蜜桃以每千克16元的价格出售,苹果以每千克20元的价格出售,当天两种水果均全部售出,水果店获利1800元.(1)求水蜜桃的进价是每千克多少元?
(2)5月1日,该水果店又以相同的进价购进了300千克水蜜桃,第一天仍以每千克16元的价格出售,售出了8a千克,且售出量已超过进货量的一半.由于水蜜桃不易保存,第二天,水果店将水蜜桃的价格降低了a%,到了晚上关店时,还剩20千克没有售出,店主便将剩余水蜜桃分发给了水果店员工们,结果这批水蜜桃的利润为2660元,求a的值.
题型6 比赛积分问题
解题技巧:此类问题,主要是通过积分来列写等式方程。需要注意,有些比赛结果只有胜负;有的比赛结果又胜负和平局。
比赛总场数=胜场数+负场数+平场数 比赛积分=胜场积分+负场积分+平场积分
1.(2022·湖南娄底·七年级期中)2022年2月6日女足亚洲杯决赛,在逆境中铿锵玫瑰没有放弃,逆转夺冠!某学校掀起一股足球热,举行了班级联赛,某班开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该班获胜的场数为( )
A.4B.5C.6D.7
2.(2022·福建福州·七年级期末)姚明在一次“NBA”比赛(美国篮球联赛)中,22投14中得28分,除了3个三分球全部投中外,他还投中了______________个两分球和______________个罚球(一分球).
3.(2022·黑龙江哈尔滨·一模)某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.
4.(2022·江西宜春·七年级阶段练习)为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,并不定期举行体育比赛.已知在一次足球比赛中,胜一场得3分,平一场得1分,负一场得0分,某队在已赛的11场比赛中保持连续不败,共得25分,求该队获胜的场数.
5.(2022·安徽合肥·七年级期末)聪聪同学到某校游玩时,看到运动场的宣传栏中的部分信息(如表):
聪聪同学结合学习的知识设计了如下问题,请你帮忙解决:
(1)从表中可以看出,负一场积 分,胜一场积 分;
(2)某队在比完22场的前提下,胜场总积分能等于负场总积分吗?请说明理由.
6.(2022·山西七年级期中)某电视台组织学习党史知识竞赛,共设20道选择题,各题分值相同,答对一题得5分,可以选择不答,下表记录的是3名参赛者的得分情况.
(1)由表格知,不答一题得______分,答错一题扣______分.
(2)某参赛者D答错题数比不答题数的2倍多1题,最后得分为64分,他答对几道题?
(3)在前10道题中,参赛者E答对8题,1题放弃不答,1题答错,则后面10题中,至少要答对几题才有可能使最后得分不低于79分?为什么?
题型7 配套问题
【解题技巧】因工艺上的特点,某几个工序之间存在比例关系,需这几道工序的成对应比例才能完全配套完成,这类题型为配套问题。配套问题,主要利用配套的比例来列写等式方程。
“配套”型应用题中有三组数据:(1)车间工人的人数;(2)每人每天平均能生产的不同的零件数;(3)不同零件的配套比。利用(3)得到等量关系,先构造分式方程,再利用比例的性质交叉相乘积相等得到一元一次方程。
1.(2022·河南·郑州市七年级期末)新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每天可以生产400个口罩面或500个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下列所列方程正确的是( )
A.B.
C.D.
2.(2022·山东菏泽·八年级期中)某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为______套.
3.(2022·河北沧州·七年级期末)某工厂有28名工人生产零件和零件,每人每天可生产零件18个或零件12个(每人每天只能生产一种零件),一个零件配两个零件.工厂将零件批发给商场时,每个零件可获利10元,每个零件可获利5元.(1)若每天生产的零件和零件恰好配套,求该工厂每天有多少工人生产零件?(2)因市场需求,该工厂每天在生产配套的零件外,还要多生产出一部分零件供商场零售.在(1)的人员分配情况下,现从生产零件的工人中调出多少名工人生产零件,才能使每天生产的零件全部批发给商场后总获利为3120元?
4.(2022·广东·七年级期末)2020年3月,我县新冠肺炎疫情最为严重.为支持抗疫,某工厂紧急加工一批医用口罩.已知某车间有52名工人,每名工人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配2个口罩耳绳.请问安排多少名工人生产口罩面,能使每天生产的口罩面与口罩耳绳刚好配套.
5.(2022·江西赣州·七年级期末)石城县矿山机械设备闻名省内外.在某矿山机械设备车间工人正在紧张地按订单进度进行生产,若每人每天平均可以生产轴承12个或者轴杆16个,1个轴承与2个轴杆组成一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?
6.(2022·吉林七年级期末)某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.
(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?
(2)在(1)的方案中,能配成 套.
题型8 调配问题
【解题技巧】调配问题中,调配前后总量始终保持不变,可利用这个关系列写等式方程,有时又在调配前后的变化中找等量关系。
调出者的数量=原有的数量-调出的数量 调进者的数量=原有的数量+调入的数量
1.(2022·浙江七年级月考)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州运往南昌的机器为台.
(1)用的代数式来表示总运费(单位:元)
(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?
(3)试问有无可能使总运费是8600元?请说明理由.
2.(2022·广东七年级期中)某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:
(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)
(2) 如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?
3.(2022·山东禹城市·七年级期中)在天府新区的建设中,现要把176吨物资从某地运往华阳的甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为12吨/辆和8吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?(2)如果安排10辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,运往甲、乙两地的总运费为w元,求出w与a的关系式;(3)在(2)的条件下,若运往甲地的物资为100吨,请求出安排前往甲地的大货车多少辆,并求出总运费.
4.(2022·广东罗湖区·七年级期末)某市水果批发部门欲将 A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为 200 元/ 时.其它主要参考数据如下:
运输过程中,火车因多次临时停车,全程在路上耽误 2 小时 45 分钟,火车的总支出费用与汽车的总支出费用相同,请问某市与本地的路程是多少千米?
5.(2022·浙江柯桥区·七年级期中)公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:
(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 ;
则乙厂家运往A地的自行车的量数为 ;则乙厂家运往B地的自行车的量数为 ;
(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?
6.(2022·四川八年级期末)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?
题型9 数字与日历问题
解题技巧:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.
在日历问题中,横行相邻两数相差1,竖邻相邻两数相差7,即可设日历中某数为(在日历中该数上下左右都有相应数字),横行相邻数为,;竖邻两数为,;
注:求出的数必须是整数且符合画框要求。
1.(2022·江苏·七年级专题练习)有一个两位数,个位上的数字比十位上的数字大1,如果把这两位数的个位与十位对调,那么所得的新数与原数的和是121,求这个两位数.设十位上的数字为x,则可列方程为__.
2.(2022·广东江门·七年级期末)我国古代的“九宫格”是由3×3的方格构成的,每个方格内均有不同的数,每一行每一列以及每一条对角线上的三个数之和相等.如图,给出了“九宫格”的一部分,则阴影部分的数值是______.
3.(2022·河南驻马店·七年级期末)将连续的奇数1、3、5、7、9、11等,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是( )
A.34B.62C.118D.158
4.(2022·安徽阜阳·七年级期末)下表所示是2022年元月的月历表.下列结论:
①每一竖列上相邻的两个数,下面的数比上面的数大7;
②可以框出一竖列上相邻的三个数,这三个数的和是24;
③可以框出一个的矩形块的四个数,这四个数的和是82;
④任意框出一个的矩形块的九个数,这九个数的和是中间数的9倍,其中正确的是__________(把所有正确的序号都填上).
5.(2022·云南七年级期末)下图是某月的月历,通过观察发现:
(1)在月历中,观察一个横列上相邻的三个数,如果三个数的和为63,则这三个数分别为 、 、 ;
(2)在月历中,观察一个竖列上相邻的三个数,如果设中间的数为,则另外两个数分别为 、 ;
(3)随手拿出一张月历,在上面任意圈出一个如图所示"22"的正方形,请问这4个数的和可能是112吗?如果可能,请你求出4个数分别是多少?如果不可能,请说明理由。
6.(2022·湖北荆州·七年级期末)把正整数1,2,3,4,…,排列成如图1所示的一个表,从上到下分别称为第1行、第2行、第3行……,从左到右分别称为第1列、第2列、第3列…….用如图2所示的方框在图1中框住16个数,把其中没有被阴影覆盖的四个数分别记为a,b,c,d.设a=x.
(1)在图1中,数2022排在第几行第几列?(2)若,求出d所表示的数;
(3)将图1中的奇数都改为原数的相反数,偶数不变,此时的值能否为2700?如果能,请求出a所表示的数,并求出a在图1中排在第几行第几列;如果不能,请说明理由.
题型10.和、差、倍、分(比例)问题
(1)和、差、倍问题关键要分清是几倍多几和几倍少几,“是”、“比”相当于“=”;
即:当较大量是/比较小量的几倍多几时:较大量=较小量×倍数+多余量;
当较大量是/比较小量的几倍少几时:较大量=较小量×倍数-所少量。
(2)寻找相等关系:抓住关键词列方程,常见的关键词:多、少、和、差、不足、剩余以及倍,增长率等.
1.(2022·河南开封·七年级期中)《九章算术》是我国古代的数学名著,卷七“盈不足”中有题译文如下:令有人合伙买羊,每人出5钱,会差45钱,每人出7钱,会差3钱,问合伙人数:羊价各是多少?设合伙人数为x,所列方程正确的是( )
A.5x﹣45=7x﹣3B.5x+45=7x+3C.D.
2.(2022·山东滨州·七年级期末)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,则这些消毒液分装成的这两种产品中有______瓶大瓶产品.
3.(2022·湖南省临湘市教研室九年级期中)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x斗,那么可列方程为_________.
4.(2022·吉林长春·七年级期末)新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.
5.(2022·江西吉安·七年级期末)直播带货已经成为年轻人购物的新时尚.某网红为回馈粉丝,在直播间为某品牌带货促销:凡购买该品牌产品均享受13%的补贴(凭付款截屏到线上客服处返现).某粉丝购买该品牌电视和空调各一台共花去6000元,且该空调的单价比所买电视的单价的2倍还多600元.(1)该粉丝可以到线上客服处返多少元现金?(2)该粉丝所买的空调与电视的单价各是多少元?
6.(2022·陕西·交大附中分校模拟预测)冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?
题型11 几何问题(等积问题)
解题技巧:图形无论如何切割或边形,其面积或体积始终不变,利用这个不变的特点,列写等式方程。
1.(2022·江苏·七年级单元测试)一个长方形的周长为28cm,若把它的长减少1cm,宽增加3cm,就变成一个正方形,则这个长方形的面积是( )
A.48B.45C.40D.33
2.(2022·河南南阳·七年级期末)如图,在长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,则当△APE的面积为5cm2时,x的值为__________.
3.(2022·重庆丰都·七年级期末)在边长为的正方形中,放置两张大小相同的正方形纸板,边在上,点,分别在,上,若区域的周长比区域Ⅱ与区域Ⅲ的周长之和还大,则正方形纸板的边长为______.
4.(2022·重庆丰都·七年级期末)在边长为9cm的正方形中,放置两张大小相同的正方形纸板,边EF在AB上,点K,I分别在BC,CD上,若区域Ⅰ的周长比区域Ⅱ与区域Ⅰ的周长之和还大6cm,则正方形纸板的边长为________cm.
5.(2022·浙江八年级期中)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为,用两个相同的管子在容器的高度处(即管子底端离容器底)连通.现三个容器中,只有甲中有水,水位高,如图所示、,若每分钟同时向乙和丙注入等量的水,开始注水1分钟,乙的水位上升,则注水___________分钟后,甲与乙的水位高度之差是.
6.(2022·河南平顶山·七年级期末)如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm)
题型12 一元一次方程之动点问题
1.(2022·山东济南·七年级期末)如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的项点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边________上.
2.(2022·河南南阳·七年级期中)如图,数轴上A、B两点对应的有理数分别是和. 动点P从点A出发,以每秒1个单位的速度沿数轴在A、B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B、A之间往返运动,设运动时间为秒,当时,若原点O恰好是线段PQ的中点,则的值是_______.
3.(2022·江苏·泰兴市济川初级中学七年级阶段练习)如图,长方形ABCD中,AB=8cm,BC=6cm,点P从A出发,以1cm/s的速度沿A→B→C运动,最终到达点C,在点P运动了8秒后,点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t秒,当△APQ的面积为4cm2时,t的值为________
4.(2022·安徽·桐城市第二中学七年级期末)已知多项式的次数为a,常数项为b,a,b分别对应着数轴上的A、B两点.
(1)______,______;并在数轴上画出A、B两点;
(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;
(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动到终点A,点Q到达终点C停止.求点P和点Q运动多少秒时,P,Q两点之间的距离为4.
5.(2022·四川·安岳县七年级期中)如图1,在长方形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间;(1)当t 为何值时,线段AQ的长度等于线段AP的长度?(2)当t 为何值时,AQ与AP的长度之和是长方形周长的?(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t 为何值时,线段AQ的长等于线段CP的长的一半?
6.(2022·河南三门峡·七年级期末)爱思考的小明将一个玩具火车放置在数轴上水平移动,如图(1).他发现当A点移动到B点时,B点所对应的数为24;当B点移动到A点时,A点所对应的数6(单位:单位长度).
图(1)
(1)由此可得点A处的数字是 ,玩具火车的长为 个单位长度.
(2)如果火车AB正前方10个单位处有一个“隧道”MN,火车AB从(1)的起始位置出发到完全驶离“隧道”恰好用了t秒,已知火车AB的速度为0.5个单位/秒,则可知“隧道”MN的长为 个单位.(自己在草纸上画图分析,用含t的代数式表示即可)
(3)他惊喜的发现,“数轴”是学习数学的重要的工具,于是他继续深入探究:在(1)条件下的数轴上放置与AB大小相同的玩具火车CD,使原点O与点C重合,两列玩具火车分别从点O和点A同时在数轴上同时移动,已知CD火车速度为2个单位/秒,AB火车速度为1个单位/秒(两火车均向右运动),几秒后两火车的A处与C处相距2个单位?
阶梯
电量
电价
一档
0~180度
0.6元/度
二档
181~400度
0.7元度
三档
400度及以上
0.9元/度
月租费
(元)
主叫通话
(分钟)
上网流量
(G)
接听
主叫超时部分
(元/分钟)
超出流量部分
(元/G)
方式一
38
200
3
免费
0.15
10
方式二
60
300
5
免费
0.10
8
全民应纳税所得额
税率
不超过3000的部分
3%
超过3000元至12000元部分
10%
超过12000元至25000元部分
20%
……
……
价目表
每月用水量
单价(元/)
不超过18的部分
3
超出18不超出25的部分
4
超出25的部分
7
长
宽
高
小纸盒
1
2
大纸盒
2
3
月使用费/元
主叫限定时间/min
主叫超时费/(元/min)
方式一
58
200
a
方式二
88
400
0.25
打折前一次性购物总金额
优惠措施
不超过450元
不优惠
超过450元,但不超过600元
售价打九折
超过600元
其中600元部分打8.2折优惠超过600元部分3折优惠
甲种
乙种
进价(元/千克)
5
9
售价(元/千克)
8
13
校篮球赛成绩公告
比赛场次
胜场
负场
积分
22
12
10
34
22
14
8
36
22
0
22
22
参赛者
答对题数
不答题数
答错题数
得分
A
19
0
1
94
B
18
1
1
91
C
18
2
0
94
终点
起点
南昌
武汉
温州厂
400
800
杭州厂
300
500
运输工具
途中平均速度(千米/时)
运费(元/千米)
装卸费用(元)
火车
100
15
2000
汽车
80
20
900
运往地
车型
甲地(元/辆)
乙地(元/辆)
大货车
640
680
小货车
500
560
运输工具
途中平均速度(千米/ 时)
运费(元/ 千米)
装卸费用(元)
火车
100
15
2000
汽车
80
20
900
运往
运费(元/辆)
甲厂家
乙厂家
A地
5
10
B地
6
4
日
一
二
三
四
五
六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
相关试卷
这是一份北师大版数学七上期末培优训练专题09 基本平面图形 重难点题型13个(2份,原卷版+解析版),文件包含北师大版数学七上期末培优训练专题09基本平面图形重难点题型13个原卷版doc、北师大版数学七上期末培优训练专题09基本平面图形重难点题型13个解析版doc等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份北师大版数学七上期末培优训练专题08 探究与表达规律(八大题型) (2份,原卷版+解析版),文件包含北师大版数学七上期末培优训练专题08探究与表达规律八大题型原卷版doc、北师大版数学七上期末培优训练专题08探究与表达规律八大题型解析版doc等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份北师大版数学七上期末培优训练专题06 整式的加减 重难点题型11个(2份,原卷版+解析版),文件包含北师大版数学七上期末培优训练专题06整式的加减重难点题型11个原卷版doc、北师大版数学七上期末培优训练专题06整式的加减重难点题型11个解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。