搜索
    上传资料 赚现金
    英语朗读宝

    陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析)

    陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析)第1页
    陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析)第2页
    陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析)第3页
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析)

    展开

    这是一份陕西省延安市富县2023-2024学年八年级上学期期末考试数学试卷(含解析),共15页。试卷主要包含了请将各题答案填写在答题卡上.等内容,欢迎下载使用。
    1.满分120分,答题时间为120分钟.
    2.请将各题答案填写在答题卡上.
    一、选择题(本大题共8小题,每小题3分,满分24分)
    1.下列常见的数学符号可以看成是轴对称图形的是( )
    A.B.C.D.
    2.雪花是一种晶体,结构随温度的变化而变化,又名未央花和六出.单个雪花的重量很轻,只有左右,数据0.00003用科学记数法可以表示为( )
    A.B.C.D.
    3.下列运算与的结果相等的是( )
    A.B.C.D.
    4.在下列计算中,不能用平方差公式计算的是( )
    A.B.
    C.D.
    5.已知图中的两个三角形全等,则的度数是( )
    A.B.C.D.
    6.若与的乘积中不含的一次项,则的值为( )
    A.2B.C.4D.
    7.如图,在中,为的平分线,于点,于点,若的面积是,,,则的长为( )
    A.B.C.D.
    8.若关于的方程无解,则的值为( )
    A.1B.2C.或D.1或
    二、填空题(本大题共5小题,每小题3分,满分15分)
    9.计算: .
    10.在和中,,,添加条件 ,可直接由“”判定.
    11.若三角形的三边长分别为2,5,,则化简:的结果为 .
    12.一个长方形的面积为,其中一边长为,则长方形的另一边长为 .
    13.若分式的值为正数,则的取值范围是 .
    三、解答题(本大题共13小题,满分81分.解答应写出文字说明、证明过程或演算步骤)
    14.因式分解:.
    15.计算:.
    16.化简:.
    17.如图,在中,,,请用尺规作图法,在边上求作一点,使.(保留作图痕迹,不写作法)
    18.如图,,,.求证:.
    19.一个多边形的内角和与外角和的度数之和为,求这个多边形的边数.
    20.如图,在四边形中,,平分.求证:是等腰三角形.
    21.如图,在中,的周长为18,,是边的垂直平分线,分别交,于点,,连接,求的周长.

    22.如图,的三个顶点坐标分别为,,.

    (1)在图中画出关于轴对称的,并写出点的坐标;
    (2)在图中轴上求作一个点,使得的值最小.
    23.完全平方公式:.将完全平方方式适当地变形可以解决很多数学问题.
    例:若,,求的值.
    解:,,
    ,.


    根据上面的解题思路与方法,解答下列问题:
    (1)若,,求的值.
    (2)若,求的值.
    24.下面是学习分式方程的应用时,老师板书的问题和甲、乙两名同学列的方程.
    为加快公共领域充电基础设施建设,某停车场计划购买,两种型号的充电桩.已知型充电桩比型充电桩的单价少0.3万元,且用18万元购买型充电桩与用24万元购买型充电桩的数量相等.求,两种型号充电桩的单价.
    甲:.
    乙:.
    根据以上信息,解答下列问题:
    (1)甲同学所列方程中的表示______,乙同学所列方程中的表示______.
    (2)请你从两个方程中任选一个,解方程并回答老师提出的问题.
    25.如图,在中,与的平分线相交于点,的外角.与的平分线交于点.
    (1)若,求的度数.
    (2)试探索与之间的数量关系,并证明.
    26.问题提出
    (1)已知在等边三角形中,点在上,点在的延长线上,且.
    ①如图1,当为的中点时,则______.(填“”“”或“”)
    ②如图2,当为边上任意一点时,请判断与之间的数量关系,并给予证明.
    问题解决
    (2)如图3,现有一块不规则图形的钢材,它是由一块等边和一块等腰焊接而成的(焊接过程不考虑变形),设计要求等腰的顶点刚好在线段的延长线上,若,,求的长.

    参考答案与解析
    1.A
    【详解】解:在、、、四个数学符号中,是轴对称图形的是.
    故选:A
    2.C
    【详解】根据科学记数法的表示较小的数时,一般形式为,其中,可确定,n为由原数左边起第一个不为零的数字前面的0的个数所决定,可确定,
    因此0.00003用科学记数法表示为:.
    故选:C
    3.D
    【详解】,
    A. ,不符合题意;
    B. ,不符合题意;
    C. ,不符合题意;
    D. ,符合题意;
    故选:D.
    4.C
    【详解】解:A、,此选项正确,故不符合题意;
    B、,此选项正确,故不符合题意;
    C、,此选项错误,故符合题意;
    D、,此选项正确,故不符合题意,
    故选:C.
    5.A
    【详解】解:∵两个三角形全等,是边a的对角,即边b、c夹角,
    ∴的度数是.
    故选:A.
    6.B
    【详解】解:,
    与的乘积中不含x的一次项,


    故选:B.
    7.B
    【详解】解:为的平分线,于点,于点,

    ,的面积是,,,


    故选:B.
    8.D
    【详解】解:分式方程去分母得:,整理得:,
    当时,方程无解;
    当时,若,则,即;
    综上所述,或时该方程无解.
    故选D.
    9.1
    【详解】解:.
    故答案为:1.
    10.
    【详解】在和中,

    ∴,
    故答案为:.
    11.4
    【详解】解:由三角形三边关系定理得,
    即.
    ∴.
    故答案为:4.
    12.
    【详解】解:一个长方形的面积为,一边长为,
    它的另一边长为:,
    故答案为:.
    13.或
    【详解】解:∵分式的值为正数,
    ∴或,
    解得或,
    故答案为:或
    故答案为:或
    14.
    【详解】.
    15.
    【详解】解:

    16.
    【详解】解:
    .
    17.画图见解析
    【详解】如图所示,点P即为所求;
    证明:连接,
    ∵,,



    ∴.
    18.见解析
    【详解】∵,
    ∴,即.
    在和中,


    19.多边形的边数为7
    【详解】解:设多边形的边数是,由题意得,

    解得:.
    答:多边形的边数为7.
    20.见解析
    【详解】解:平分,





    是等腰三角形.
    21.
    【详解】是边的垂直平分线
    在和中,
    (SAS)

    的周长为
    的周长为:
    22.(1),画图见解析,点的坐标为
    (2)画图见解析
    【详解】(1)解:如图,即为所求作的三角形;

    点的坐标为.
    (2)如图,P即为所求,

    23.(1)
    (2)
    【详解】(1)解:,,


    (2)解:,


    24.(1)型充电桩的单价;购买型充电桩的数量
    (2)型充电桩的单价为0.9万元,型充电桩的单价为1.2万元
    【详解】(1)型充电桩的单价;购买型充电桩的数量.
    (2)选择甲同学所列的方程.
    ,解得.
    经检验,是所列方程的解,且符合题意,

    答:型充电桩的单价为0.9万元,型充电桩的单价为1.2万元.
    选择乙同学所列的方程.
    ,解得.
    经检验,是所列方程的解,且符合题意,
    ,.
    答:型充电桩的单价为0.9万元,型充电桩的单价为1.2万元.
    25.(1)
    (2).证明见解析
    【详解】(1)解:,
    .
    ,分别是和的平分线,
    ,,

    .
    (2)解:,证明如下:
    是的平分线,是的平分线,
    ,,
    .
    同理可得:.
    又四边形内角和为,
    .
    26.(1)①;②.证明见解析;(2)CD=5m
    【详解】(1)①如图1,∵是等边三角形,点E是的中点,
    ∴平分,,
    ∴,,,
    又∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,即;
    ②.
    证明:如图2,过点作,交于点.
    为等边三角形,
    为等边三角形,
    ,.


    ,,

    在和中,




    (2)如图3,过点作,则为等边三角形.
    同理,可得.
    ,,


    相关试卷

    陕西省延安市富县2023-2024学年八年级上学期期中考试数学试卷(含答案):

    这是一份陕西省延安市富县2023-2024学年八年级上学期期中考试数学试卷(含答案),共12页。试卷主要包含了本试卷共8页,满分120分;等内容,欢迎下载使用。

    陕西省延安市富县2023-2024学年七年级上学期期末考试数学试卷(含答案):

    这是一份陕西省延安市富县2023-2024学年七年级上学期期末考试数学试卷(含答案),共7页。试卷主要包含了请将各题答案填写在答题卡上,根据等式性质,下列变形正确的是,下列说法正确的是,已知,则代数式的值是,用“△”定义一种新运算等内容,欢迎下载使用。

    陕西省延安市富县2022-2023学年八年级下学期期末考试数学试卷(含解析):

    这是一份陕西省延安市富县2022-2023学年八年级下学期期末考试数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map