所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省秦皇岛市北戴河区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省秦皇岛市北戴河区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是( )
A. B. C. D.
2. 若分式有意义,则x的取值范围是( )
A. x≠2B. x=2C. x≥-2D. x≥2
3. 某类新型冠状病毒的直径约为0.000000125米,将0.000000125米用科学记数法表示为( )
A. 米B. 米
C. 米D. 米
4. 下列从左到右的运算是因式分解的是( )
A. 2x2﹣2x﹣1=2x(x﹣1)﹣1B. 4a2+4a+1=(2a+1)2
C. (a+b)(a﹣b)=a2﹣b2D. x2+y2=(x+y)2﹣2xy
5. 已知分式的值是零,那么的值是
A. ﹣1B. 0C. 1D. ±1
6. 如果在△ABC中,∠A=70°-∠B,则∠C等于( )
A. 35°B. 70°C. 110°D. 140°
7. 计算的结果为( )
A. B.
C. D.
8. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
9. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
10. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
11. 如图,四边形ABCD中,,,连接BD,BD⊥CD,垂足是D且,点P是边BC上的一动点,则DP的最小值是( )
A. 1B. 2C. 3D. 4
12. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
13. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
14. 下列说法中,正确的个数有( )
①若一个多边形的外角和等于360°,则这个多边形的边数为4;
②三角形的高相交于三角形的内部;
③三角形的一个外角大于任意一个内角;
④一个多边形的边数每增加一条,这个多边形的内角和就增加;
⑤对角线共有5条的多边形是五边形.
A. 1个B. 2个C. 3个D. 4个
15. 如图,已知在△ABC中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为( )
A. +=B. -=
C. +1=﹣D. +1=+
二.填空题(本大题共3题,总计 12分)
17. 当________时,分式无意义.
18. 已知三角形的三边长分别为3,5,x,则化简式子|x-2|+|x-9|=___.
19. 如图,先将正方形纸片对折,折痕为,再把点折叠到折痕上,折痕为,点在上的对应点为,则______°.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)分解因式:;
21. 先化简,再求值: ,请你选取一个使原分式有意义的a的值代入求值.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 如图,ΔABC,ΔADE均是等边三角形,点B,D,E三点共线,连按CD,CE;且CD⊥BE.
(1)求证:BD=CE;
(2)若线段DE=3,求线段BD的长.
24. 我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:
(1)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).
(2)用竖式进行运算.
(3)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求的商式和余式.
解:
答:商式是,余式是( )
我挑战:已知能被整除,请直接写出a、b的值.
25. 某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.
(1)求甲、乙两个工程队每天各筑路多少米?
(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?
26. (1)问题发现:如图,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
①的度数为________;
②线段AE、BD之间的数量关系为________;
(2)拓展探究:如图②,△ABC和△DCE都是等腰直角三角形,,点B、D、E在同一条直线上,CM为△DCE中DE边上的高,连接AE.试求的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图,△ABC和△DCE都是等腰三角形,,点B、D、E在同一条直线上,请直接写出的度数.
秦皇岛市北戴河区2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:选项不是轴对称图形,故不符合题意;
选项不是轴对称图形,故不符合题意;
选项是轴对称图形,故符合题意;
选项不是轴对称图形,故不符合题意;
故选:
2.【答案】:A
【解析】:解:若分式有意义,则,
即,
故选:A
3.【答案】:B
【解析】:可知a=1.25,从左起第一个不为0的数字前面有7个0,所以n=7,
∴0.000000125=1.25×10−7 .
故选:B.
4.【答案】:B
【解析】:解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;
B、把一个多项式转化成几个整式积的形式,故本选项正确;
C、是整式的乘法,故本选项错误;
D、没把一个多项式转化成几个整式积的形式,故本选项错误;
故选:B.
5.【答案】:C
【解析】:解:由题意可知:且,
,
故选:C.
6.【答案】:C
【解析】:解:∵∠A=70°-∠B,
∴∠A+∠B=70°,
∴∠C=180°-(∠A+∠B)=180°-70°=110°.
故选C.
7.【答案】:A
【解析】:解:原式=(0.1x)2﹣(0.3y)2
=0.01x2﹣0.09y2,
故选:A.
8.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
9.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
10.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
11.【答案】:C
【解析】:解:∵BD⊥CD,∠A=90°
∴∠ABD+∠ADB=90°,
∠CBD+∠C=90°,
∵∠ADB=∠C ,
∴∠ABD=∠CBD,
由垂线段最短得,DP⊥BC时DP最小,
此时,DP=AD=3.
故选:C.
12.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
13.【答案】:C
【解析】:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
14.【答案】:B
【解析】:解:①任意多边形的外角和等于360°,说法错误,不符合题意;
②只有锐角三角形的高相交于三角形的内部,说法错误,不符合题意;
③根据三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,得三角形的一个外角大于任意一个于它不相邻的内角,说法错误,不符合题意;
④根据多边形内角和公式:,得一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确,符合题意;
⑤n边形的对角线条数为:,当n=5时,,说法正确,符合题意;
综上,正确个数有2个,
故选B.
15.【答案】:C
【解析】:如图,过点D作于点F.
∴在△DBE和中,
∴△DBE≅△DFC(AAS),
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:C
【解析】:设原计划速度为x千米/小时,
根据题意得:
原计划的时间为:,
实际的时间为: +1,
∵实际比原计划提前40分钟到达目地,
∴ +1=﹣,
故选C.
二. 填空题
17.【答案】:
【解析】:依题意得:,
解得:,
18.【答案】: 7
【解析】:解:根据题意,得5−3
相关试卷
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省昌黎县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共27页。试卷主要包含了选择题等内容,欢迎下载使用。