所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,轴对称图形的个数是( )
A. 1个B. 2个C. 3个D. 4个
2. 下列图形具有稳定性的是( )
A. B. C. D.
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 分式﹣可变形为( )
A. ﹣B. C. ﹣D.
5. 如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )
A. AC=ADB. AC=BCC. ∠ABC=∠ABDD. ∠BAC=∠BAD
6. 若把分式中的和都扩大5倍,那么分式的值( )
A. 扩大5倍B. 不变C. 缩小5倍D. 缩小25倍
7. 已知:,,则的值是( )
A. B. C. 4D.
8. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
9. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
10. 如图,,下列等式不一定正确的是( )
A. B. C. D.
11. 如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是( )
A. B. C. D.
12. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
13. 为半径画弧,交O′A′于点C′;
(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
小聪作法正确的理由是( )
A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
D. 由“等边对等角”可得∠A′O′B′=∠AOB
14. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
15. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4B. C. D. 6
16. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A. 1个B. 2个C. 3个D. 4个
二.填空题(本大题共3题,总计 12分)
17. 请写出一个运算式子,使运算结果等于.你写的运算式子是______.
18. 已知三角形的三边长分别为3,5,x,则化简式子|x-2|+|x-9|=___.
19. 如图,已知△ABC中,,直角的顶点P是的中点,两边、分别交、于点E、F,给出以下四个结论:
①;
②是等腰直角三角形;
③;
④当在△ABC内绕顶点P旋转时(点E不与A、B重合),.
上述结论中始终正确有__________(填序号).
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 把下列各式分解因式:
(1)4a2﹣1;
(2)3a2﹣6ab+3b2
(3)a2(x﹣y)﹣4x+4y
(4)m2﹣17m﹣38
21. 先化简,再求值:,其中-2x2,请从x的范围中选入一个你喜欢的值代入,求此分式的值.
22. 如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).
(1)如图1,作出△ABC关于直线m轴对称图形△A′B′C′;
(2)如图2,在直线m上找到一点P,使PA+PB的值最小;
(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.
(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.
23. 如图,ΔABC,ΔADE均是等边三角形,点B,D,E三点共线,连按CD,CE;且CD⊥BE.
(1)求证:BD=CE;
(2)若线段DE=3,求线段BD的长.
24. 我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:
(1)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).
(2)用竖式进行运算.
(3)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求的商式和余式.
解:
答:商式是,余式是( )
我挑战:已知能被整除,请直接写出a、b的值.
25. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
26.
(1)【自主学习】填空:
如图1,点是的平分线上一点,点A在上,用圆规在上截取,连接,可得 ,其理由根据是 ;
(2)【理解运用】如图2,在中,,,平分,试判断和、之间的数量关系并写出证明过程.
(3)【拓展延伸】如图3,在中,,,分别是,的平分线,,交于点,若,,请直接写出的长.
磁县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:第1个是轴对称图形;
第2个是轴对称图形;
第3个不是轴对称图形;
第4个是轴对称图形;
故选C.
【画龙点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.【答案】:A
【解析】:A.具有稳定性,符合题意;
B.不具有稳定性,故不符合题意;
C.不具有稳定性,故不符合题意;
D.不具有稳定性,故不符合题意,
故选:A.
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:B
【解析】: 可变式为
∴B正确
故选B
5.【答案】:A
【解析】:解: 需要添加条件为:BC= BD或AC= AD,理由为:
若添加的条件为:BC= BD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD(HL) ;
若添加的条件为:AC=AD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD( HL).
故选:A.
6.【答案】:C
【解析】:把分式中的和都扩大5倍,
即,
即得到的式子比原式缩小了5倍.
故选:C
7.【答案】:D
【解析】:
∴= =4÷8×9=
故选:D
8.【答案】:C
【解析】:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
9.【答案】:B
【解析】:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
10.【答案】:D
【解析】:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
11.【答案】:C
【解析】:如图,
∵∠BEF是△AEF的外角,∠1=20,∠F=30,
∴∠BEF=∠1+∠F=50,
∵AB∥CD,
∴∠2=∠BEF=50,
故选:C.
12.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
13.【答案】:A
【解析】:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
则根据“SSS”可判断△C′O′D′≌△COD.
故选:A.
14.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
15.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
16.【答案】:C
【解析】:要使△ABP与△ABC全等,
必须使点P到AB的距离等于点C到AB的距离,
即3个单位长度,
所以点P的位置可以是P1,P2,P4三个,
故选C.
二. 填空题
17.【答案】: (答案不唯一)
【解析】:.
故答案为∶(答案不唯一).
【画龙点睛】本题考查了同底数幂相乘的法则,解题的关键是注意掌握同底数幂的运算法则.
18.【答案】: 7
【解析】:解:根据题意,得5−3
相关试卷
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省安国市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共19页。试卷主要包含了选择题等内容,欢迎下载使用。