所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省张家口市桥西区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省张家口市桥西区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共18页。试卷主要包含了选择题等内容,欢迎下载使用。
1. (-12)0 的值是( )
A B. C. 1D. 1
2. 下列运算,正确的是( )
A. a3+2a3=3a6B. (a2)4=a8
C. a2a3=a6D. (2ab)2=2a2b2
3. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基, 拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000000125用科学记数法表示为( )
A. 1.25×10-6B. 1.25×10-7C. 1.25×106D. 1.25×107
4. 已知等腰三角形的一个内角为50°,则它的另外两个内角是 ( )
A. 65°,65°B. 80°,50°
C. 65°,65°或80°,50°D. 不确定
5. 若一个正多边形的一个内角为,则这个图形为正( )边形
A. 八B. 九C. 七D. 十
6. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
7. 对于①,②,从左到右的变形,表述正确的是( )
A. 都因式分解B. 都是乘法运算
C. ①因式分解,②是乘法运算D. ①是乘法运算,②是因式分解
8. 如图所示,在△ABC中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为( )
A. 4B. 6C. 2D. 1
9. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
10. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
11. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
12. 为半径画弧,交O′A′于点C′;
(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
小聪作法正确的理由是( )
A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
D. 由“等边对等角”可得∠A′O′B′=∠AOB
13. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
14. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6D.
15. 如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )
A. 2B. C. 4D.
16. 寒假到了,为了让同学们过一个充实而有意义假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 计算: =_________.
18. 若点M(3,a)关于y轴的对称点是点N(b,2),则___________.
19. 观察下列各式
…
则________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
21. 分解因式:
(1)
(2)
22. 如图,在下方单位长度为1的方格纸中画有一个△ABC.
(1)画出△ABC关于y轴对称△A′B′C′;
(2)求△ABC的面积.
23. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
张家口市桥西区2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:
故选C
2.【答案】:B
【解析】:因为,所以A不符合题意;
因为,所以B符合题意;
因为,所以C不符合题意;
因为,所以D不符合题意.
故选:B.
3.【答案】:B
【解析】:解:0.000000125=1.25×10-7,
故答案选:B
4.【答案】:C
【解析】:若50°为顶角,则底角为,
即另外两个内角为65°,65°;
若50°为底角,则顶角为,
即另外两个内角为80°,50°,
综上可得另外两个内角为65°,65°或80°,50°,
故选C.
5.【答案】:D
【解析】:解:设所求正n边形边数为n, 则
解得
故答案为:D.
6.【答案】:D
【解析】:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
7.【答案】:C
【解析】:①左边多项式,右边整式乘积形式,属于因式分解;
②左边整式乘积,右边多项式,属于整式乘法;
故答案选C.
8.【答案】:C
【解析】:解: , ,D为BC中点,
,
,
,D为BC中点,
,
,
, ,
,
.
故答案为:C.
9.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
10.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
11.【答案】:D
【解析】:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
12.【答案】:A
【解析】:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
则根据“SSS”可判断△C′O′D′≌△COD.
故选:A.
13.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
14.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
15.【答案】:C
【解析】:解:∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=∠AOB=30°,
∵PD⊥OA,M是OP的中点,DM=4cm,
∴OP=2DM=8,
∴PD=OP=4,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=4.
故选C
16.【答案】:D
【解析】:解:设小芳每天看书x页,则小荣每天看页,
由题意得: ,
故选:D.
二. 填空题
17.【答案】: 3
【解析】:原式=1+2=3
故答案为:3.
18.【答案】: -1
【解析】:解:∵点M(3,a)关于y轴的对称点是点N(b,2),
∴b=-3,a=2,
∴a+b=-1,
∴(a+b)2021=(-1)20121=-1.
故答案为:-1.
19.【答案】:
【解析】:解:由上述式子可归纳出:
故答案为:.
三.解答题
20【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
21【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
22【答案】:
(1)见解析;(2)
【解析】:
(1)解:△ABC关于y轴对称的如下图所示 :
(2)
.
23【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
甲每小时加工600个零件,乙每小时加工500个零件
【解析】:
解:设乙组每小时加工的零件数为x个,则甲组每小时加工零件数为
(1+20%)x个.根据题意得:
=+,
解得:x=500,
经检验,x=500是原方程的解,
(1+20%)x=600,
答:甲每小时加工600个零件,乙每小时加工500个零件.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
相关试卷
这是一份河北省张家口市桥西区2024~2025学年九年级(上)期中数学试卷(含答案),共10页。
这是一份河北省张家口市桥西区2024~2025学年八年级(上)期中数学试卷(含答案),共11页。
这是一份河北省张家口市桥西区九级2025届九上数学开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。