河北省张家口市桥西区九级2025届九上数学开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是( )
A.B.
C.D.
2、(4分)一组数中,无理数的个数是( )
A.2B.3C.4D.5
3、(4分)已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是( )
A.6~7 B.8~9 C.10~11 D.12~13
4、(4分)在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()
A.1∶2∶3B.2∶3∶4
C.1∶4∶9D.1∶∶2
5、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A.甲B.乙C.丙D.丁
6、(4分)下列函数中,一次函数是( ).
A.B.C.D.
7、(4分)已知□ABCD的周长为32,AB=4,则BC的长为( )
A.4B.12C.24D.28
8、(4分)一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为( )
A.7与7B.7与7.5C.8与7.5D.8与7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若对于的任何值,等式恒成立,则__________.
10、(4分)已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.
11、(4分)如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.
12、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
13、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为_____(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
三、解答题(本大题共5个小题,共48分)
14、(12分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
(1)写出扇形图中______,并补全条形图;
(2)样本数据的平均数是______,众数是______,中位数是______;
(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
15、(8分)计算:(1)
(2)(﹣1)2﹣(﹣)(+)
16、(8分)如图,网格中小正方形的边长均为1,请你在网格中画出一个,要求:顶点都在格点(即小正方形的顶点)上;三边长满足AB=,BC=,.并求出该三角形的面积.
17、(10分)先化简,再求值:÷(x﹣),其中x=﹣1.
18、(10分)如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的一元二次方程有一个根为 ,则________.
20、(4分)若分式的值为0,则的值为____.
21、(4分)计算:_____.
22、(4分)如果a是一元二次方程的一个根,那么代数式=__________.
23、(4分)命题“全等三角形的面积相等”的逆命题是__________
二、解答题(本大题共3个小题,共30分)
24、(8分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:
(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.
(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.
25、(10分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.
(1)在图1中,当AB=AD=10cm时,△ABD的周长为 .
(2)在图2中,当BA=BD=10cm时,△ABD的周长为 .
(3)在图3中,当DA=DB时,求△ABD的周长.
26、(12分)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90∘,再向下平移2格后的图形△A′B′C′.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
A:a>0且-(a-2)>0,即0<a<2,可能;
B:a<0且-(a-2)<0,a无解,不可能;
C:a<0且-(a-2)>0,即a<0,可能;
D:a>0且-(a-2)<0,即a>2,可能;
故选B.
点睛:本题关键在于根据图像判断出参数的范围.
2、B
【解析】
先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.
【详解】
因为,所以是无理数,共有3个,故答案选B.
本题考查的是无理数的定义,能够将二次根式化简是解题的关键.
3、D
【解析】分析:分别计算出各组的频数,再除以10即可求得各组的频率,看谁的频率等于0.1.
详解:A中,其频率=1÷10=0.1;
B中,其频率=6÷10=0.3;
C中,其频率=8÷10=0.4;
D中,其频率=4÷10=0.1.
故选:D.
点睛:首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.
4、D
【解析】
设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.
解:如图所示,
设30°角所对的直角边BC=a,
则AB=1BC=1a,
∴AC=,
∴三边之比为a:a:1a=1::1.
故选D.
“点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.
5、D
【解析】
解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,∴S甲2>S乙2>S丙2>S丁2,故选D.
6、A
【解析】
根据一次函数的定义分别进行判断即可.
【详解】
解:.是一次函数,故正确;
.当时,、是常数)是常函数,不是一次函数,故错误;
.自变量的次数为,不是一次函数,故错误;
.属于二次函数,故错误.
故选:.
本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.
7、B
【解析】
根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解
【详解】
∵四边形ABCD是平行四边形
∴AB=CD,AD=BC
∵平行四边形ABCD的周长是32
∴2(AB+BC)=32
∴BC=12
故正确答案为B
此题主要考查平行四边形的性质
8、A
【解析】
根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.
【详解】
解:根据统计图可得:
7出现了4次,出现的次数最多,
则众数是7;
∵共有10个数,
∴中位数是第5和6个数的平均数,
∴中位数是(7+7)÷2=7;
故选:A.
此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先通分,使等式两边分母一样,然后是使分子相等,可以求出结果。
【详解】
3x-2=3x+3+m
m=-5
故答案为:-5
此题考查分式的化简求值,掌握运算法则是解题关键
10、
【解析】
写一个经过一、三象限的反比例函数即可.
【详解】
反比例函数与有交点.
故答案为:.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
11、
【解析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.
【详解】
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,
∴EF=DH=.
故答案为:.
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
12、
【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
【详解】
∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB==5,
故菱形的周长为1,
故答案为:1.
本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
13、90.
【解析】
(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;
(Ⅱ)构造正方形BCDE即可.
【详解】
(Ⅰ)如图,∵△ABM是等腰直角三角形,
∴∠ABM=90°
(Ⅱ)构造正方形BCDE,∠AEC即为所求;
故答案为90
本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题
三、解答题(本大题共5个小题,共48分)
14、(1)25%,图形见解析;(2)5.3,5,5;(3)540名
【解析】
(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;
(2)根据平均数、众数与中位数的定义求解即可;
(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.
【详解】
(1)由题意可得,
,
样本总数为:,
做6个的学生数是,
条形统计图补充如下:
(2)由补全的条形图可知,
样本数据的平均数,
∵引体向上5个的学生有60人,人数最多,
∴众数是5,
∵共200名同学,排序后第100名与第101名同学的成绩都是5个,
∴中位数为;
(3)该区体育中考中选报引体向上的男生能获得满分的有:
(名),
即该区体育中考中选报引体向上的男生能获得满分的有540名.
本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.
15、(1);(2)
【解析】
(1)根据绝对值的意义、有理数的乘方、二次根式的性质、负整数指数幂的意义化简,进而求和即可;
(2)根据二次根式混合运算法则计算即可.
【详解】
(1)原式==;
(2)原式===.
本题考查了实数的混合运算.熟练掌握相关法则是解答本题的关键.
16、图形详见解析,面积为1.
【解析】
根据勾股定理,结合格点的特征画出符合条件的三角形即可,利用经过三角形三个顶点长方形的面积减去三个直角三角形的面积即可求得△ABC的面积.
【详解】
如图,△ABC即为所求:
则S△ABC=3×3﹣﹣﹣=1.
本题考查了勾股定理与格点三角形,根据勾股定理结合格点的特征作出三角形是解决问题的关键.
17、,-2.
【解析】
首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.
【详解】
,
=
=
=,
当x=﹣2时,原式==﹣2.
此题主要考查了分式的化简求值,正确分解因式是解题关键.
18、(1)一次函数的解析式为y= x-12(2)36
【解析】
分析:(1)先把点C(4,m)代入y=-3x+6得求得m=-6,然后利用待定系数法确定一次函数的解析式;
(2)先确定直线y=-3x+6与x轴的交点坐标,然后利用S△ACD=S△ABD+S△ABC进行计算.
(1)∵y=-3x+6经过点C(4,m)
∵-3×4+6=m
∴m=-6.
点C的坐标为(4,-6)
又∵y=kx+b过点A(8,0)和C(4,-6),
所以,解得
∴一次函数的解析式为y=x-12;
(2)∵y=-3x+6与y轴交于点D,与x轴交于点B,
∴D点的坐标为(0,6),点B的坐标为(2,0),
过点C作CH⊥AB于H,
又∵点A(8,0),点C(4,-6)
∴AB=8-2=6,OD=6,CH=6,
点睛:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2,直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点满足两函数的解析式,也考查了待定系数法求一次函数的解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.
【详解】
把代入,
得2m-4=0
解得m=2
本题考查一元二次方程的解,熟练掌握计算法则是解题关键.
20、2
【解析】
先进行因式分解和约分,然后求值确定a
【详解】
原式=
∵值为0
∴a-2=0,解得:a=2
故答案为:2
本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立
21、1
【解析】
【分析】根据同分母分式加减法的法则进行计算即可得.
【详解】
=
=1,
故答案为1.
【点睛】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.
22、1
【解析】
根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.
【详解】
解:把x=a代入x2-1x-5=0得a2-1a-5=0,
所以a2-1a=5,
所以8-a2+1a=8-(a2-1a)=8-5=1.
故答案为:1.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
23、如果两个三角形的面积相等,那么是全等三角形
【解析】
首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.
【详解】
命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.
故答案为:如果两个三角形的面积相等,那么是全等三角形
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、解答题(本大题共3个小题,共30分)
24、 (1)A、B两类图书的标价分别是27元、18元;(2)当书店进A类600本,B类200本时,书店获最大利润.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书m本,总利润为w元,则购进B类图书为(800-m)本,根据题目中所给的信息列出不等式组,求出m的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,则可列方程
解得:x=18
经检验:x=18是原分式方程的解
则A、B两类图书的标价分别是27元、18元
(2)设A类进货m本,则B类进货(800-m)本,利润为W元.
由题知:
解得:.
W=(27-a-18)m+(18-12)(800-m)=(3-a)m+4800
∵
∴
∴W随m的增大而增大
∴当m=600时,W取最大值
则当书店进A类600本,B类200本时,书店获最大利润
本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
25、(1)32m;(2)(20+4)m;(3)
【解析】
(1)利用勾股定理得出DC的长,进而求出△ABD的周长;
(2)利用勾股定理得出AD的长,进而求出△ABD的周长;
(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.
【详解】
:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴
则△ABD的周长为:10+10+6+6=32(m).
故答案为:32m;
(2)如图2,当BA=BD=10m时,
则DC=BD-BC=10-6=4(m),
故
则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;
故答案为:(20+4)m;
(3)如图3,∵DA=DB,
∴设DC=xm,则AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周长为:AD+BD+AB=2
此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.
26、见解析.
【解析】
先作出绕点逆时针旋转的三角形,然后再下平移2格的对应点、、,然后顺次连接即可.
【详解】
如图所示,虚线三角形为绕点按逆时针方向旋转的三角形,
即为所要求作的三角形.
本题考查了利用平移变换与旋转变换作图,本题先作出绕点逆时针旋转的三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
河北省张家口市桥西区2024年数学九上开学考试试题【含答案】: 这是一份河北省张家口市桥西区2024年数学九上开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】: 这是一份河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄桥西区数学九上开学监测试题【含答案】: 这是一份2024年河北省石家庄桥西区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。