所属成套资源:浙教版数学七年级下册同步教学课件
初中数学浙教版(2024)七年级下册第三章 整式的乘除3.1 同底数幂的乘法教学ppt课件
展开
这是一份初中数学浙教版(2024)七年级下册第三章 整式的乘除3.1 同底数幂的乘法教学ppt课件,共21页。PPT课件主要包含了学习目标,x10,am+n,amn,复习回顾,底数不变,指数相乘,指数相加,amnamn,am·anam+n等内容,欢迎下载使用。
理解并掌握积的乘方法则及其应用.
会运用积的乘方的运算法则进行计算.
1.计算:(1) 10×102× 103 =______ ;(2) (x5 )2=_________.
2.(1)同底数幂的乘法 :am·an= ( m,n都是正整数).
(2)幂的乘方:(am)n= (m,n都是正整数).
其中m , n都是正整数
思考:同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?
根据乘方的意义和同底数幂的乘法法则填空:(1)(4×6)3 =(4×6)·(4×6)·(4×6) =(4×4×4)·(6×6×6) =4( ) ×6 ( ) .(2)(4×6)5 =____________________________________ =4( ) ×6 ( ) .
3 3
(4×4×4×4×4)·(6×6×6×6×6)
5 5
(3)(ab)4 =____________________________________ =a( ) ×b ( ) .
(a×a×a×a)·(b×b×b×b)
4 4
根据乘方的意义和同底数幂的乘法法则填空:
(ab)n=______ (n为正整数)
因此可得:(ab)n=anbn (n为正整数).
积的乘方,等于把积的每一个因式分别_____,再把所得的幂________.
(ab)n = anbn (n为正整数)
思考:三个或三个以上的积的乘方等于什么?
(abc)n = anbncn (n为正整数)
上 下精品教学资源
例1:计算下列各式:(1)(2b)5 . (2)(3x 3 )6 .(3)(-x3 y2 )3 . (4) ( ab)4 .
解 (1)(2b)5 =25 b5 =32b5 .(2)(3x3)6 =3 6(x3)6 =36x18 =729x18 .(3)(-x3 y2)3 =-(x3)3(y2 )3 =-x9 y6 .(4) ( ab)4 =( ) 4 a4 b4 = a4 b4 .
【点睛】运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.
计算:(1)(-5ab)3; (2)-(3x2y)2; (3)(-3ab2c3)3; (4)(-xmy3m)2.
(4)(-xmy3m)2=(-1)2x2my6m=x2my6m.
解:(1)(-5ab)3=(-5)3a3b3=-125a3b3;
(2)-(3x2y)2=-32x4y2=-9x4y2;
(3)(-3ab2c3)3=(-3)3a3b6c9=-27a3b6c9;
(1) -4xy2·(xy2)2·(-2x2)3; (2) (-a3b6)2+(-a2b4)3.
解:(1)原式=-4xy2·x2y4·(-8x6)
(2)原式=a6b12+(-a6b12)
【点睛】涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.
例3:如何简便计算(0.04)2004×[(-5)2004]2?
=(0.22)2004 × 54008
=(0.2)4008 × 54008
=(0.2 ×5)4008
(0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004
=(0.04×25)2004
= (0.04)2004 ×(25)2004
【点睛】逆用积的乘方公式an·bn=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式,再运用此公式可进行简便运算.
例4:木星是太阳系八大行星中最大的一颗. 木星可以近似地看做球体,它的半径大约是7×104km. 求木星的体积(结果精确到1014 位).
解 V = π×(7×10 4 )3= π×73 ×1012≈ 1.44×1015 (km3 ).答:木星的体积大约是 1.44×1015 km3
1.计算:(-2xy2 )2= ______ . 解: (-2xy2 )2 =4x2 y4
2.计算下列各式:(1)(-3x2 y)3 (2)(2xy2 )2 (3)( )10×(-2)10.解:(1)原式=-27x y3; (2)原式=4x2 y4; (3)原式=(-2× )10=1.
3.计算下列各式: (1)(-3x2)⋅(2x3) (2)-x3 y4⋅(x3 y2 )2解:(1)原式=(-3)×2·(x2·x3 ) =-6x5 (2)原式=-x3 y4·x6 y4 =-x9 y8.
4.阅读下列各式:(a⋅b)2=a2 b2,(a⋅b)3=a3 b3,(a⋅b)4=a4 b4… 回答下列三个问题:(1)验证:(2× )100= ______ ,2100×( )100= ______ ;
(2)通过上述验证,归纳得出:(a⋅b)n= ______ ; (abc)n= ______ .(3)请应用上述性质计算:(-0.125) 2017×22016×42015.
解:(1)(2× )100=1 , 2100×( )100=1; (2)(a·b)n=an bn, (abc) n=an bn cn;
(3)原式=(-0.125)2015×22015×42015×[(-0.125)×(-0.125)×2] =(-0.125×2×4)2015× =(-1)2015× = .
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
(ab)n =an bn (n 为正整数)
相关课件
这是一份初中数学浙教版(2024)七年级下册3.1 同底数幂的乘法教学课件ppt,共20页。PPT课件主要包含了学习目标,复习回顾,a2n,知识精讲,amn,证一证,幂的乘方法则,典例解析,3am2,2a24等内容,欢迎下载使用。
这是一份浙教版(2024)七年级下册第三章 整式的乘除3.1 同底数幂的乘法教学课件ppt,共20页。PPT课件主要包含了学习目标,知识精讲,问题1怎样列式,am+n,aaa,同底数幂相乘,同底数幂的乘法法则,am+n+p,典例解析,针对练习等内容,欢迎下载使用。
这是一份数学3.1 同底数幂的乘法图文ppt课件,共12页。PPT课件主要包含了生活引入,小试牛刀,例题讲解,巩固练习,123×210,a10,x10,拓展提高等内容,欢迎下载使用。