搜索
    上传资料 赚现金
    英语朗读宝

    衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案)

    衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案)第1页
    衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案)第2页
    衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案)

    展开

    这是一份衡阳县第四中学2024-2025学年高二上学期11月期中考试数学(B)试卷(含答案),共12页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题
    1.如图,在四棱柱的上底面ABCD中,,则下列向量相等的是( )
    A.与B.与C.与D.
    2.已知空间向量,,且,则( )
    A.10B.6C.4D.
    3.过下列两点,的直线的斜率为( )
    A.1B.0C.-1D.不存在
    4.圆的圆心到直线的距离为( )
    A.2B.C.1D.
    5.平面内点P到,的距离之和是10,则动点P的轨迹方程是( )
    A.B.C.D.
    6.已知直线l的方向向量是,平面的一个法向量是,则l与的位置关系是( )
    A.B.
    C.l与相交但不垂直D.或
    7.已知圆与圆外切,则r的值为( )
    A.1B.5C.9D.21
    8.已知直线与圆相交于A,B两点,则的最小值为( )
    A.B.C.D.
    二、多项选择题
    9.已知的三个顶点,,,则下列说法正确的是( )
    A.直线AC的斜率为
    B.直线AB的倾斜角为锐角
    C.BC边的中点坐标为
    D.BC边上的中线所在的直线方程为
    10.已知圆与直线,下列选项正确的是( )
    A.圆的圆心坐标为B.直线过定点
    C.直线与圆相交且所截最短弦长为D.直线与圆可以相离
    11.如图,在正方体中,E,F分别为的中点,则( )
    A.
    B.平面
    C.平面
    D.直线DF与直线CE所成角的余弦值为
    三、填空题
    12.已知直线,直线.若,则实数a的值为______.
    13.方程表示焦点在x轴上的椭圆,则实数k的取值范围是__________.
    14.欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线,这条线称之为三角形的欧拉线.已知,,,且为圆内接三角形,则的欧拉线方程为________.
    四、解答题
    15.求满足题意的直线方程:
    (1)求过点,斜率是直线的斜率的的直线方程;
    (2)求过点,且在x轴上的截距等于在y轴上截距的直线方程.
    16.已知圆C上有两个点,,且AB为直径.
    (1)求圆C的方程;
    (2)已知,求过点P且与圆C相切的直线方程.
    17.分别求符合下列条件的椭圆的标准方程:
    (1)过点,且与椭圆有相同的焦点.
    (2)经过两点,.
    18.如图,在正方体中,E为的中点,F为的中点.
    (1)求证:平面;
    (2)求直线,所成角的余弦值.
    19.如图,在四棱锥中,底面是正方形,侧棱底面,,E是的中点,作交于点F.
    (1)求证:平面;
    (2)求平面与平面的夹角的大小.
    参考答案
    1.答案:D
    解析:因为,则四边形是平行四边形,结合题图,
    ,A错误;
    ,B错误;
    与方向不相同,C错误;
    ,D正确.
    故选:D.
    2.答案:C
    解析:因为,所以,即,,则.故选:C.
    3.答案:A
    解析:由斜率的坐标计算公式可知过两点,的直线的斜率为.
    故选:A.
    4.答案:D
    解析:圆心为,点到直线的距离为.故选D.
    5.答案:B
    解析:由题意,
    平面内点P到,的距离之和是10,
    动点P的轨迹为椭圆,焦点在轴上,
    ,,解得:,
    ,
    轨迹方程为:,
    故选:B.
    6.答案:D
    解析:
    7.答案:A
    解析:因为圆与圆外切,
    所以,解得.
    故选:A
    8.答案:D
    解析:依题意,得圆心,半径,直线恒过定点.,点D在圆C内部,的值最小时,直线AB与CD垂直.又,.故选D.
    9.答案:CD
    解析:对于A,直线AC的斜率为,故A错误;
    对于B,直线AB的斜率为,所以直线AB的倾斜角为钝角,故B错误;
    对于C,设BC边的中点为,则,,即点,故C正确;
    对于D,BC边上的中线AD所在的直线方程为,整理得,故D正确.
    故选:CD.
    10.答案:AC
    解析:对于A中,由圆,
    可得圆的圆心坐标为,半径为,所以A正确;
    对于B中,由直线,可化为,
    令,解得,,所以直线恒过点,所以B不正确;
    对于C中,由圆心坐标为和定点,可得,
    根据圆的性质,当直线与CP垂直时,直线与圆相交且所截的弦长最短,
    则最短弦长为,所以C正确;
    对于D中,由直线恒过定点,且,即点在圆内,所以直线与圆相交,所以D不正确.
    故选:AC.
    11.答案:AD
    解析:以点D为原点,建立如图所示的空间直角坐标系,设,
    则,,,,,.
    ,,,.
    A选项,因为,所以,A正确.
    B选项,设平面的法向量为,
    则,
    令得,,,故,
    因为,
    所以与不垂直,则直线DF与平面不平行,B错误.
    C选项,若平面,则.
    因为,所以直线BF与直线不垂直,矛盾,C错误.
    D选项,,D正确.
    故选:AD
    12.答案:1或
    解析:因为直线,
    直线,且,
    所以,
    解得或.
    故答案为:1或.
    13.答案:
    解析:由题意可得解得,故实数k的取值范围是.
    故答案为:.
    14.答案:/
    解析:依题意,解得,
    所以圆,即,故圆心坐标为,
    即的外心坐标为,又的重心坐标为,
    又点、均在直线上,所以的欧拉线方程为.
    故答案为:
    15.答案:(1)
    (2)或
    解析:(1)斜率是直线的斜率的的直线斜率,
    利用斜截式可得:,化为一般式:.
    (2)直线经过原点时满足条件,可得直线方程为:,即;
    直线不经过原点时,截距不为0,
    设直线方程为:,把点代入可得:,解得,
    化为一般式:;
    综上:所求直线为或.
    16.答案:(1)
    (2)
    解析:(1)因为圆C的直径为AB,故其圆心为,
    其半径为,
    故圆C的方程为:.
    (2)因为,故P在圆C上,连接PC,
    而直线的斜率:,故圆C在P处的切线的斜率为,
    故所求切线的方程为:.
    17.答案:(1)
    (2)
    解析:(1)因为所求的椭圆与椭圆的焦点相同,所以其焦点在x轴上,且.
    设所求椭圆的标准方程为.
    因为所求椭圆过点,所以有①
    又,②
    由①②解得.
    故所求椭圆的标准方程为.
    (2)设椭圆方程为,且,在椭圆上,
    所以,则椭圆方程.
    18.答案:(1)证明见解析;
    (2)
    解析:(1)证明:连
    几何体为正方体,
    ,
    ,平面,平面,平面;
    (2)以D为坐标原点,向量,,方向分别为x,y,z轴建立如图所示空间直角坐标系.
    令,可得点D的坐标为,点E的坐标为,点F的坐标为,点B的坐标为,
    ,
    ,所成角的余弦值为.
    19.答案:(1)证明见解析
    (2)
    解析:(1)建立如图所示的空间直角坐标系,设.
    依题意得,,,,
    所以,,
    故.
    所以.
    由已知,且,,平面,
    所以平面.
    (2)已知,由(1)可知平面平面,所以,故是平面与平面的夹角.
    设点F的坐标为,则,
    因为,所以,
    即,,,
    设,则,
    所以,点F的坐标为,即,
    又点E的坐标为,所以,
    所以,
    又为锐角,所以,即平面与平面的夹角大小为.

    相关试卷

    湖南省衡阳市衡阳县第四中学2024-2025学年高二上学期11月期中数学试题(B卷):

    这是一份湖南省衡阳市衡阳县第四中学2024-2025学年高二上学期11月期中数学试题(B卷),文件包含湖南省衡阳县四中2024-2025学年高二第一学期期中考试数学试卷平行班docx、期中考试数学答案docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    湖南省衡阳市衡阳县第四中学2024-2025学年高一上学期期中考试数学试题:

    这是一份湖南省衡阳市衡阳县第四中学2024-2025学年高一上学期期中考试数学试题,文件包含湖南省衡阳县四中2024-2025学年上学期高一期中考试数学试卷平行班docx、期中答案docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    2023~2024学年湖南衡阳衡阳县衡阳县第四中学高一上学期期中A卷数学试卷(11月)(含答案与解析):

    这是一份2023~2024学年湖南衡阳衡阳县衡阳县第四中学高一上学期期中A卷数学试卷(11月)(含答案与解析),共12页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map