所属成套资源:2025年中考数学二轮复习 专题巩固练习(含答案)
2025年中考数学二轮复习压轴题培优练习 圆存在问题(含答案)
展开
这是一份2025年中考数学二轮复习压轴题培优练习 圆存在问题(含答案),共22页。
如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B为OD中点.
(1)求过A,B,C三点的抛物线解析式;
(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MNMB时,求M点的坐标;
(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.
如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;
(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+eq \f(\r(5),5)DB的最小值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.
(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;
(2)如图2,延长线段OC至N,使得ON=eq \r(3),若∠OBN=∠ONA,且tan∠ABM=eq \f(\r(13),2),求抛物线的解析式;
(3)如图3,抛物线y=ax2+bx+c的对称轴为直线x=eq \f(5,2),与y轴交于(0,5),经过点C的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,求k的取值范围.
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;
(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;
(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.
如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=eq \f(1,3)x2+eq \f(7,3)x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)
(1)则m= ,n= .
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.
①求圆心M的坐标;
②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).
抛物线:y=﹣x2+bx+c与y轴的交点C(0,3),与x轴的交点分别为E、G两点,对称轴方程为x=1.
(1)求抛物线的解析式;
(2)如图1,过点C作y轴的垂线交抛物线于另一点D,F为抛物线的对称轴与x轴的交点,P为线段OC上一动点.若PD⊥PF,求点P的坐标.
(3)如图1,如果一个圆经过点O、点G、点C三点,并交于抛物线对称轴右侧x轴的上方于点H,求∠OHG的度数;
(4)如图2,将抛物线向下平移2个单位长度得到新抛物线L,点B是顶点.直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.与对称轴交于点G,若△BMN的面积等于2eq \r(2),求k的值.
在平面直角坐标系中,二次函数y=eq \f(1,2)x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接AC,PA,PC,若S△PAC=eq \f(15,2),求点P的坐标;
(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.
(1)求该抛物线的解析式;
(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.
①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;
②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线y=eq \f(1,2)x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).
(1)求此抛物线的解析式;
(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;
(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),
①求点M的坐标及⊙M的半径;
②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.
如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.
(1)求抛物线的解析式;
(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.
1°求线段MN的最大值;
2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.
\s 0 答案
解:(1)如图1,∵圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,
∴A(2,0),C(0,2),D(﹣2,0),E(0,﹣2),
∵B为OD中点,
∴B(﹣1,0),
∵抛物线经过点A(2,0),B(﹣1,0),C(0,2),
∴设y=a(x+1)(x﹣2),
将C(0,2)代入,得:2=a(0+1)(0﹣2),解得:a=﹣1,
∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,
∴抛物线解析式为y=﹣x2+x+2.
(2)如图2,过点C作CH⊥BP于H,
∵OB=1,OC=2,OA=2,∠AOC=∠BOC=90°,
∴BC=eq \r(5),AC=2eq \r(2),
∵MC2=MNMB,
∴=,
∵∠CMN=∠BMC,
∴△MCN∽△MBC,
∴∠MCN=∠MBC,
∵OA=OC=2,∠AOC=90°,
∴∠MCN=45°,
∴∠MBC=45°,
∵∠BHC=90°,
∴CH=BH=BCcs∠MBC=eq \r(5)cs45°=eq \f(\r(10),2),
∵∠BCH=∠MBC=45°,
∴∠BCO+∠HCN=∠MCH+∠HCN,
∴∠BCO=∠MCH,
∴cs∠BCO=cs∠MCH,
∴=,∴CM=,
∴AM=AC﹣CM=eq \f(3,4)eq \r(2),
过点M作MG⊥OA于G,则∠AGM=90°,
∵∠MAG=45°,
∴AG=MG=AMsin∠MAG=eq \f(3,4)eq \r(2)×sin45°=eq \f(3,4),
∴OG=OA﹣AG=2﹣eq \f(3,4)=eq \f(5,4),∴M(eq \f(5,4),eq \f(3,4)).
(3)四边形CFEH是矩形.理由如下:
设抛物线与⊙O的交点坐标为(t,﹣t2+t+2),
∵⊙O的半径为2,
∴(t﹣0)2+(﹣t2+t+2﹣0)2=22,
化简,得:t4﹣2t3﹣2t2+4t=0,
∵t≠0,
∴t3﹣2t2﹣2t+4=0,
∴(t﹣2)(t2﹣2)=0,解得:t1=2(舍去),t2=eq \r(2),t3=﹣eq \r(2),
∴H(eq \r(2),eq \r(2)),F(﹣eq \r(2),﹣eq \r(2)),
∴H、F关于点O对称,
∴FH=CE=4,且OC=OE=OF=OH,
∴四边形CFEH是矩形.
解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,
得,解得,
∴抛物线的解析式为y=-eq \f(1,2)x2+eq \f(3,2)x+2.
(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).
当y=0时,由-eq \f(1,2)x2+eq \f(3,2)x+2=0,得x1=1,x2=4,
∴C(4,0),
∴CF=AO=1,AF=3﹣(﹣1)=4;
又∵BF=2,
∴,
∵∠BFC=∠AFB=90°,
∴△BFC∽△AFB,
∴∠CBF=∠BAF,
∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,
∴BC∥AE,
∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,
∴△BCF≌△EAO(ASA),
∴BC=EA,
∴四边形ABCE是矩形;
∵OE=FB=2,
∴E(0,﹣2).
(3)如图2,作FL⊥BC于点L,连结AL、CD.
由(2)得∠BFC=90°,BF=2,CF=1,
∴CF=CD,CB=eq \r(5).
∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),
∴△FCL∽△BCF,
∴=,∴=,
∵∠DCL=∠BCD(公共角),
∴△DCL∽△BCD,
∴=,
∴LD=eq \f(\r(5),5)DB;
∵DA+LD≥AL,
∴当DA+LD=AL,即点D落在线段AL上时,DA+eq \f(\r(5),5)DB=DA+LD=AL最小.
∵CL=eq \f(\r(5),5)CF=eq \f(\r(5),5),∴BL=eq \f(4\r(5),5),∴BL2=(eq \f(4\r(5),5))2=eq \f(16,5),
又∵AB2=22+42=20,
∴AL===,DA+DB的最小值为.
解:(1)点C的路径长==;
(2)∵∠ONA=∠OBN,∠AON=∠NOB,
∴△ONA∽△OBN,
∴,即OAOB=ON2=3,即,故c=3a,
∵a+b+c=1,
在△ABM中,tan∠ABM===,
∴b2﹣4ac=13,即(1﹣4a)2﹣4a3a=13,解得a=﹣1(舍去)或3,
∴抛物线的表达式为y=3x2﹣11x+9;
(3)由题意得:,解得,
故抛物线的表达式为:y=x2﹣5x+5;
设点D(t,n),n=t2﹣5t+5,而点C(1,1),
将点D、C的坐标代入函数表达式得
,则k==t﹣4,
若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,
则点H(,),则HP=HC,即(﹣1)2+(﹣1)2=()2,
化简得:3t2﹣18t+19=0,解得:t=3+eq \f(2,3)eq \r(6)(不合题意的值已舍去),
k=t﹣4=eq \f(2,3)eq \r(6)﹣1.
若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,则以DC为直径的圆H和x轴相交,
∴0<k<eq \f(2,3)eq \r(6)-1.
解:(1)∵半圆圆心M的坐标为(1,0),半圆半径为2.
∴A(﹣1,0),B(3,0),
设抛物线为y=a(x+1)(x﹣3),
∵抛物线过D(0,﹣3),
∴﹣3=a(0+1)(0﹣3),解得a=1,y=(x+1)(x﹣3),
即y=x2﹣2x﹣3(﹣1≤x≤3);
连接AC,BC,
∵AB为半圆的直径,
∴∠ACB=90°,
∵CO⊥AB,
∴∠ACO+∠OCB=∠OCB+∠OBC=90°,
∴∠ACO=∠OBC,
∴△ACO∽△CBO,
∴,
∴CO2=AOBO=3,
∴CO=eq \r(3),
∴CD=CO+OD=3+eq \r(3);
(2)假设点E在x轴上方的“蛋圆”上,设E(m,n),则点F的坐标为(m,﹣n).EF与x轴交于点H,连接EM.
∴HM2+EH2=EM2,∴(m﹣1)2+n2=4,…①;
∵点F在二次函数y=x2﹣2x﹣3的图象上,
∴m2﹣2m﹣3=﹣n,…②;
解由①②组成的方程组得:;.(n=0舍去)
由对称性可得:;.
∴E1(1+eq \r(3),1),E2(1﹣eq \r(3),1),E3(1+eq \r(3),-1),E4(1﹣eq \r(3),-1).
(3)如图4,∵∠BPC=60°保持不变,
因此点P在一圆弧上运动.此圆是以K为圆心(K在BC的垂直平分线上,且∠BKC=120°),BK为半径.当BP为直径时,BP最大.
在Rt△PCR中可求得PR=1,RC=eq \r(3).
所以点P的坐标为(1,2eq \r(3)).
解:(1)当x=﹣4时,y=eq \f(1,3)×(﹣4)2+eq \f(7,3)×(﹣4)=﹣4,
∴点A坐标为(﹣4,﹣4),
当y=﹣2时,eq \f(1,3)x2+eq \f(7,3)x=﹣2,解得:x1=﹣1,x2=﹣6,
∵点A在点B的左侧,
∴点B坐标为(﹣1,﹣2),
∴m=﹣4,n=﹣1.
故答案为﹣4,﹣1.
(2)①如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G.
∴∠BEO=∠OGB'=90°,OE=1,BE=2,
∵将△AOB绕点O逆时针旋转90°得到△A'OB′,
∴OB=OB',∠BOB'=90°,
∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,
∴∠B'OG=∠OBE,
在△B'OG与△OBE中,
,
∴△B'OG≌△OBE(AAS),
∴OG=BE=2,B'G=OE=1,
∵点B'在第四象限,
∴B'(2,﹣1),
同理可求得:A'(4,﹣4),
∴OA=OA'=4eq \r(2),
∵抛物线F2:y=ax2+bx+4经过点A'、B',
∴,解得:,
∴抛物线F2解析式为:y=eq \f(1,4)x2﹣3x+4,
∵直线OB′的解析式为y=﹣eq \f(1,2)x,
由,解得或,
∴点C(8,﹣4),
∵A′(4,﹣4),
∴A′C∥x轴,
∵线段OA′的垂直平分线的解析式为y=x﹣4,
线段A′C的垂直平分线为x=6,
∴直线y=x﹣4与x=6的交点为(6,2),
∴△OA′C的外接圆的圆心M的坐标为(6,2).
②设⊙M与抛物线C2的交点为P(m,eq \f(1,4)m2﹣3m+4).
则有(m﹣6)2+(eq \f(1,4)m2﹣3m+2)2=62+22,解得m=0或12或4或8,
∵A'、C除外,
∴P(0,4),或(12,4).
解:(1)将C(0,3)代入y=﹣x2+bx+c可得c=3,
∵对称轴是直线x=1,
∴x=1,解得b=2,
∴二次函数解析式为y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3与y轴的交点C(0,3),对称轴方程为x=1.CD⊥y轴,
∴D(2,3),
∵对称轴与x轴相较于点F,
∴点F的坐标为(1,0),
设P点坐标为(0,a),
∵CD⊥y轴,OF⊥y轴,
∴∠DCF=∠POF=90°
∴∠OFP+∠OPF=90°,
∵PD⊥PF,
∴∠DPF=90°,
∴∠CPD+∠OPF=90°,
∴∠OFP=∠CPD,
∴△CDP∽△OPF,
∴,∴,解得:a1=1,a2=2,
∴P点的坐标为(0,1)或(0,2);
(3)如图:连接CG,
∵y=﹣x2+2x+3,
令y=0,则﹣x2+2x+3=0,解得x=3或x=﹣1,
∴G(3,0),E(﹣1,0),
∴OG=OC,
∵OC⊥OG,
∴△COG为等腰直角三角形,
∴∠OCG=45°,
∵点O、点G、点C、点H四点共圆,
∴∠OHG=∠OCG=45°;
(4)∵将抛物线向下平移2个单位长度得到抛物线L,
∴抛物线L的解析式为y=﹣x2+2x+3﹣2=﹣x2+2x+1=﹣(x﹣1)2+2,
∴B点坐标为(1,2),联立,即kx﹣k+4=﹣x2+2x+1,
∴x2+(k﹣2)x+3﹣k=0,设两个交点为N(x1,y1),M(x2,y2),
则x1+x2=2﹣k,x1x2=3﹣k,
S△BMN=S△BGN﹣S△BGM==BG
==BG=2,
把x=1代入y=kx﹣k+4,得;y=4,
∴G(1,4),
∵B(1,2),
∴BG=4﹣2=2,
∴,解得:k=±4,
∵k<0,
∴k=﹣4.
解:(1)∵二次函数y=eq \f(1,2)x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,
∴二次函数的解析式为y=eq \f(1,2)(x+2)(x﹣4),即y=eq \f(1,2)x2﹣x﹣4.
(2)如图甲中,连接OP.设P(m,eq \f(1,2)m2﹣m﹣4).
由题意,A(﹣2,0),C(0,﹣4),
∵S△PAC=S△AOC+S△OPC﹣S△AOP,
∴eq \f(15,2)=eq \f(1,2)×2×4+eq \f(1,2)×4×m﹣eq \f(1,2)×2×(﹣eq \f(1,2)m2+m+4),
整理得,m2+2m﹣15=0,解得m=3或﹣5(舍弃),
∴P(3,﹣eq \f(5,2)).
(3)结论:点P在运动过程中线段DE的长是定值,DE=2.
理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,eq \f(1,2)(m+2)(m﹣4)],E(m,n).
由题意A(﹣2,0),AM=PM,
∴32+t2=(m﹣1)2+[eq \f(1,2)(m+2)(m﹣4)﹣t]2,解得t=1+eq \f(1,4)(m+2)(m﹣4),
∵ME=PM,PE⊥AB,∴t=,
∴n=2t﹣eq \f(1,2)(m+2)(m﹣4)=2[1+eq \f(1,4)(m+2)(m﹣4)]﹣eq \f(1,2)(m+2)(m﹣4)=2,
∴DE=2,
另解:∵PDDE=ADDB,∴DE==2,为定值.
∴点P在运动过程中线段DE的长是定值,DE=2.
解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,
将点A的坐标代入上式并解得:a=eq \f(1,2),
故抛物线的表达式为:y=eq \f(1,2)(x﹣2)2﹣2=eq \f(1,2)x2﹣2x①;
(2)①点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),
当点P在x轴下方时,
如图1,∵tan∠MBC=2,
故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,
故直线BP的表达式为:y=﹣2x+2②,
联立①②并解得:x=±2(舍去﹣2),故m=2;
当点P在x轴上方时,
同理可得:m=4±2eq \r(3)(舍去4﹣2eq \r(3));故m=2或4+2eq \r(3);
②存在,理由:连接BN、BD、EM,
则BN是△OEM的中位线,故BN=eq \f(1,2)EM=eq \f(1,2),而BD=eq \r(5),
在△BND中,BD﹣BN≤ND≤BD+BN,即eq \r(5)﹣eq \f(1,2)≤ND≤eq \r(5)+eq \f(1,2),
故线段DN的长度最小值和最大值分别为eq \r(5)﹣eq \f(1,2)和eq \r(5)+eq \f(1,2).
解:(1)c=﹣2,将点B的坐标代入抛物线表达式得:解b=eq \f(3,2),
∴抛物线的解析式为y=eq \f(1,2)x2﹣eq \f(3,2)x﹣2;
(2)当x=5时,y=eq \f(1,2)x2﹣eq \f(3,2)x﹣2=3,故D的坐标为(5,3),
令y=0,则x=4(舍去)或﹣1,故点A(﹣1,0),如图①,连接BD,作BN⊥AD于N,
∵A(﹣1,0),B(4,0),C(0,﹣2),
∴AD=3eq \r(5),BD=eq \r(10),AB=5,
∵S△ABD==,
∴BN=eq \r(5),
∴sin∠BDN=eq \f(\r(2),2),
∴∠BDN=45°;
∴∠ADB=∠BDN=45°;
(3)①如图②,连接MA,MB,
∵∠ADB=45°,
∴∠AMB=2∠ADB=90°,
∵MA=MB,MH⊥AB,
∴AH=BH=HM=eq \f(5,2),
∴点M的坐标为(eq \f(3,2),eq \f(5,2))⊙M的半径为eq \f(5,2)eq \r(2);
②如图③,连接MQ,MB,
∵过点B作⊙M的切线交1于点P,
∴∠MBP=90°,
∵∠MBO=45°,
∴∠PBH=45°,
∴PH=HB=2.5,
∵=,=,
∵∠HMQ=∠QMP,
∴△HMQ∽△QMP,
∴=,
∴在点Q运动过程中的值不变,其值为.
解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得
,解得,,
∴抛物线的解析式为:y=x2﹣4x+3;
(2)1°设直线BC的解析式为y=mx+n(m≠0),则
,解得,,
∴直线BC的解析式为:y=﹣x+3,
设M(t,﹣t+3)(0<t<3),则N(t,t2﹣4t+3),
∴MN=﹣t2+3t=﹣(t-eq \f(3,2))2+eq \f(9,4),
∴当t=eq \f(3,2)时,MN的值最大,其最大值为eq \f(9,4);
2°∵△PMN的外接圆圆心Q在△PMN的边上,
∴△PMN为直角三角形,
由1°知,当MN取最大值时,M(eq \f(3,2),eq \f(3,2)),N(eq \f(3,2),-eq \f(3,4)),
①当∠PMN=90°时,PM∥x轴,则P点与M点的纵坐标相等,
∴P点的纵坐标为eq \f(3,2),
当y=eq \f(3,2)时,y=x2﹣4x+3=eq \f(3,2),解得,x=,或x= (舍去),
∴P();
②当∠PNM=90°时,PN∥x轴,则P点与N点的纵坐标相等,
∴P点的纵坐标为﹣eq \f(3,4),
当y=﹣eq \f(3,4)时,y=x2﹣4x+3=﹣eq \f(3,4),解得,x=eq \f(5,2),或x=eq \f(3,2)(舍去),
∴P(eq \f(5,2),-eq \f(3,4));
③当∠MPN=90°时,则MN为△PMN的外接圆的直径,
∴△PMN的外接圆的圆心Q为MN的中点,
∴Q(eq \f(3,2),eq \f(3,8)),半径为eq \f(1,2)MN=eq \f(9,8),
过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,
令y=eq \f(3,8),得y=x2﹣4x+3=eq \f(3,8),
解得,x=< (舍),或x=,∴K(,),
∴QK=>,即K点在以MN为直径的⊙Q外,
设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),
连接LK,如图②,则L到QK的距离为,
LK=,
设Q点到LK的距离为h,则,
∴=,
∴直线LK下方的抛物线与⊙Q没有公共点,
∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,
∴抛物线中NL部分(除N点外)与⊙Q没有公共点,
∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,
∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,
∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;
综上,点P的坐标为(2+eq \f(\r(10),2))或(eq \f(5,2),-eq \f(3,4)).
相关试卷
这是一份2025年中考数学二轮复习压轴题培优练习 正方形存在问题(含答案),共23页。试卷主要包含了求它们二次项系数之和等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习压轴题培优练习 菱形存在问题(含答案),共27页。试卷主要包含了B,交y轴于C.等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习压轴题培优练习 平行四边形存在问题(含答案),共23页。