年终活动
搜索
    上传资料 赚现金

    2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案)

    立即下载
    加入资料篮
    2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案)第1页
    2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案)第2页
    2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案)

    展开

    这是一份2025年中考数学二轮复习压轴题培优练习 角的关系综合问题(含答案),共25页。
    如图所示,抛物线y=﹣x2+bx+3经过点B(3,0),与x轴交于另一点A,与y轴交于点C.
    (1)求抛物线所对应的函数表达式;
    (2)如图,设点D是x轴正半轴上一个动点,过点D作直线l⊥x轴,交直线BC于点E,交抛物线于点F,连接AC、FC.
    ①若点F在第一象限内,当∠BCF=∠BCA时,求点F的坐标;
    ②若∠ACO+∠FCB=45°,则点F的横坐标为 .
    已知抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.
    (1)求a、b满足的关系式;
    (2)对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|.
    ①求抛物线解析式;
    ②AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使得∠OPB=∠AHB.若存在,求出一个符合条件的点P的坐标;若不存在,请说明理由.
    已知二次函数y=x2+(k﹣2)x﹣2k.
    (1)当此二次函数的图象与x轴只有一个交点时,求该二次函数的解析式;
    (2)当k>0时,直线y=kx十2交抛物线于A,B两点(点A在点B的左侧),点P在线段AB上,过点P做PM垂直x轴于点M,交抛物线于点N.
    ①求PN的最大值(用含k的代数式表示);
    ②若抛物线与x轴交于E,F两点,点E在点F的左侧.在直线y=kx+2上是否存在唯一一点Q,使得∠EQO=90°?若存在,请求出此时k的值;若不存在,请说明理由.
    如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A,B,与y轴交于点C,已知点B(3,0).
    (1)求直线BC及抛物线的函数表达式;
    (2)P为x轴上方抛物线上一点.
    ①若S△PBC=S△ABC,请直接写出点P的坐标;
    ②如图,PD∥y轴交BC于点D,DE∥x轴交AC于点E,求PD+DE的最大值;
    (3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
    如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+4与x轴交于点A、B(点A在点B左侧),与y轴交于点C,直线y=﹣x+4经过B、C两点,OB=4OA.
    (1)求抛物线的解析式;
    (2)如图2,点P为第四象限抛物线上一点,过点P作PD⊥x轴交BC于点D,垂足为N,连接PC交x轴于点E,设点P的横坐标为t,△PCD的面积为S,求S与t的函数关系式;
    (3)在(2)的条件下,如图3,过点P作PF⊥PC交y轴于点F,PF=PE.点G在抛物线上,连接PG,∠CPG=45°,连接BG,求直线BG的解析式.
    如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.
    (1)求抛物线的解析式以及直线AD的解析式;
    (2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;
    (3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.
    抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x=m﹣1交直线l于点A,交抛物线于点B.
    (1)求c和k的值(用含m的代数式表示);
    (2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;
    (3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.
    如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.
    (1)求抛物线解析式;
    (2)连接BE,求△BCE的面积;
    (3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.
    如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.
    (1)求抛物线的解析式;
    (2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;
    (3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由.
    如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),与直线l:y=k(x﹣3)+3(k>0)交于D,E两点.
    (1)求抛物线的解析式;
    (2)如图1,连接BD,若△BDE的面积为6,求k的值;
    (3)如图2,若直线l与抛物线交于M,N两点,与BC交于点P,且∠MBC=∠NBC.求P点的坐标.
    \s 0 答案
    解:(1)∵B(3,0)在抛物线y=﹣x2+bx+3上,
    ∴﹣32+3b+3=0,
    ∴b=2,
    ∴抛物线所对应的函数表达式为y=﹣x2+2x+3;
    (2)①作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI⊥x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,
    y=﹣x2+2x+3,令x=0,则y=3,
    令y=0,则﹣x2+2x+3=0,解得:x=3或=﹣1,
    ∴A(﹣1,0),B(3,0),C(0,3).
    ∴OB=OC,AB=4,
    ∴△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,
    ∴∠HAB=∠OBC=∠AHI=∠BHI=45°,
    ∴HI=AI=BI=eq \f(1,2)AB=2,
    ∴H(1,2),
    ∴G(3,4),
    设直线CG的解析式为y=kx+3,
    把G(3,4)代入得:4=3k+3,解得k=eq \f(1,3),
    ∴直线CF的解析式为y=eq \f(1,3)x+3,
    ∴,解得,
    ∴点F的坐标为(,);
    ②当点F在x轴上方时,如图,延长CF交x轴于N,
    ∵点B(3,0),点C(0,3),
    ∴OB=OC,
    ∴∠OCB=∠OBC=45°,
    ∵A(﹣1,0),
    ∴OA=1,
    ∵∠ACO+∠FCB=45°,∠CBO=∠FCB+∠CNO=45°.
    ∴∠ACO=∠CNO,
    ∵∠COA=∠CON=90°,
    ∴△CAO∽△NCO,
    ∴,∴,
    ∴ON=9,
    ∴点N(9,0),
    设直线CF的解析式为y=k′x+3,
    把N(9,0)代入得:0=9k′+3,解得k′=﹣eq \f(1,3),
    ∴直线CF的解析式为y=﹣eq \f(1,3)x+3,
    ∴﹣eq \f(1,3)x+3=﹣x2+2x+3,∴x1=0(舍去),x2=eq \f(7,3),
    ∴点的横坐标为eq \f(7,3);
    当点F在x轴下方时,如图,设CF与x轴交于点M,
    ∵∠ACO+∠FCB=45°,∠FCB+∠OCM=45°.
    ∴∠ACO=∠OCM,
    ∵OC=OC,∠COA=∠COM=90°,
    ∴△CAO≌△CMO(ASA),
    ∴OM=OA=1,
    ∴点M(1,0),
    同理直线CF解析式为:y=﹣3x+3.
    ∴﹣3x+3=﹣x2+2x+3,∴x1=0(舍去),x2=5,
    ∴点的横坐标为5.
    综上所述,点F的横坐标为eq \f(7,3)或5.
    故答案为:eq \f(7,3)或5.
    解:(1)∵抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),
    ∴,∴a﹣b+3=0,
    ∴a﹣b=﹣3;
    (2)①∵对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|,
    ∴该抛物线的对称轴为直线x=1.
    ∴=1.
    ∴b=﹣2a.
    ∵a﹣b=﹣3,
    ∴a﹣(﹣2a)=﹣3,
    ∴a=﹣1.
    ∴b=﹣2a=2.
    ∴抛物线解析式为y=﹣x2+2x+3;
    ②在x轴上方的抛物线上存在点P,使得∠OPB=∠AHB,符合条件的点P的坐标为(0,3).理由:
    令y=0,则﹣x2+2x+3=0,解:x=3或﹣1,
    ∴B(3,0).
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4).
    设直线AC的解析式为y=dx+e,
    ∴,解得:,
    ∴直线AC的解析式为y=3x+3.
    设直线BD的解析式为y=kx+n,
    ,解得:.
    ∴直线BD的解析式为y=﹣2x+6.
    ∴,解得:,
    ∴H(eq \f(3,5),eq \f(24,5)).
    过点H作HE⊥OB于点E,过点A作AF⊥HB于点F,如图,
    则HE=eq \f(24,5),OE=eq \f(3,5).∵B(3,0),A(﹣1,0),C(0,3),
    ∴OB=3,OC=3,OA=1.
    ∴BE=OB﹣OE=eq \f(12,5),AB=OA+OB=4.
    ∴BH=eq \f(12,5)eq \r(5).
    ∵∠HEB=∠OFB=90°,∠HBE=∠OBF,
    ∴△HEB∽△OFB,
    ∴,∴,
    ∴BF=eq \f(4\r(5),5),AF=eq \f(8\r(5),5).
    ∴HF=HB﹣BF=eq \f(8\r(5),5),
    ∴AF=HF,
    ∵AF⊥BD,
    ∴△AFH为等腰直角三角形,
    ∴∠AHB=45°.
    ∵OB=OC=3,∠COB=90°,
    ∴∠OCB=∠OBC=45°,
    ∴当点P与点C重合时,满足∠OPB=∠AHB=45°,
    ∴在x轴上方的抛物线上存在点P,使得∠OPB=∠AHB,符合条件的点P的坐标为(0,3).
    解:(1)当y=0时,x2+2(k﹣2)x﹣2k=0,
    ∴(x﹣2)(x+k)=0,
    ∴x1=2,x2=﹣k,
    ∵二次函数的图象与x轴只有一个交点,
    ∴k=﹣2,
    ∴该二次函数的解析式为y=x2﹣4x+4;
    (2)①设点P的坐标为(m,km+2),则点N的坐标为(m,m2+(k﹣2)m﹣2k),
    ∴PN=km+2﹣[m2+(k﹣2)m﹣2k]=﹣m2+2m+2+2k=﹣(m﹣1)2+3+2k,
    ∴当m=1时,PN取得最大值,最大值为3+2k;
    ②如图,存在唯一的Q点,使∠EQO=90°:设直线y=kx+2交x周于G,交y轴于H,OE的中点记作I,作IQ⊥GH于Q,连接IH,
    当IQ=eq \f(1,2)OE,∠EQO=90°且有唯一的点Q,
    当y=0时,kx+2=0,
    ∴x=﹣,∴OG=,
    当x=0时,y=2,
    ∴OH=2,
    ∴GH=,
    由(1)知:OE=k,∴OI=IQ=,
    ∵S△GOH=S△HOI+S△GIH,
    ∴,
    ∴2×=2×+,
    ∴k=eq \f(4,3).
    解:(1)将点B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),
    ∴m2+m=0,
    解得m=0(舍)或m=﹣1,
    ∴y=﹣x2+4x﹣3,
    令x=0,则y=﹣3,
    ∴C(0,﹣3),
    设直线BC的函数表达式为y=kx+b,
    将点B(3,0),C(0,﹣3)代入,
    得,解得,
    ∴y=x﹣3;
    (2)①如图1,过点A作AP∥BC,则S△PBC=S△ABC,
    ∵直线BC的解析式为y=x﹣3,
    ∴直线AP的表达式为y=x﹣1.
    联立.解得 (舍)或,
    ∴P(2,1);
    ②由(1)知直线BC的表达式为y=x﹣3,
    设直线AC的解析式为y=k'x+b',
    ∴,解得,
    ∴y=3x﹣3,
    设点P(t,﹣t2+4t﹣3),则点D(t,t﹣3),,
    ∴PD=﹣t2+4t﹣3﹣(t﹣3)=﹣t2+3t,,
    ∴=﹣(t﹣)2+,
    ∴当时,PD+DE取最大值;
    (3)如图2,在抛物线上取点Q,使∠ACQ=45°,
    过点B作BM⊥BC,交CQ的延长线于点M,过点M作MN⊥x轴于点N,
    ∵B(3,0),C(0,﹣3)
    ∴OB=OC=3,BC=3eq \r(2),
    ∴△OBC为等腰直角三角形,
    ∴△BMN为等腰直角三角形,
    ∵∠ACQ=45°,
    ∴∠OCA=∠BCM,
    ∵A(1,0),
    ∴,∴,
    ∵,∴,
    ∴BN=NM=1,
    ∴M(4,﹣1),
    ∴直线CQ的解析式为y=eq \f(1,2)x﹣3,
    设点Q(n,eq \f(1,2)n﹣3),∴eq \f(1,2)x﹣3=﹣n2+4n﹣3,
    整理得:n2﹣eq \f(7,2)n=0,解得n=eq \f(7,2)或n=0(舍),
    ∴Q(eq \f(7,2),﹣eq \f(5,4)).
    解:(1)在直线y=﹣x+4中,令x=0,则y=4,
    ∴C(0,4),
    令y=0,则x=4,
    ∴B(4,0),
    ∴OB=4,
    ∵OB=4OA,
    ∴OA=1,
    ∴A(1,0),
    将A(1,0),B(4,0)代入y=ax2+bx+4,
    ∴,解得,
    ∴y=x2﹣5x+4;
    (2)∵点P的横坐标为t,
    ∴P(t,t2﹣5t+4)(1<t<4),
    ∵PD⊥x轴,
    ∴D(t,﹣t+4),
    ∴PD=﹣t+4﹣t2+5t﹣4=﹣t2+4t,
    ∴S=eq \f(1,2)×t×(﹣t2+4t)=﹣eq \f(1,2)t3+2t2;
    (3)过点P作PM⊥y轴交于M,
    ∵PN⊥x轴,
    ∴∠NPM=90°,
    ∵PF⊥PC,
    ∴∠FPE=90°,
    ∴∠FPM=∠EPN,
    ∵PE=PF,
    ∴△PFM≌△PEN(ASA),
    ∴PM=PN,
    ∴t=﹣(t2﹣5t+4),
    解得t=2,
    ∴P(2,﹣2),
    ∵PD∥OC,
    ∴∠OCA=∠CPD,
    ∵∠OCB=∠CPG=45°,
    ∴∠PCB=∠DPG,
    又∵PD∥OC,
    ∴=,即=,解得EN=,
    ∴BE=2+=,过点E作EK⊥BC交于K,
    ∵∠OBC=45°,
    ∴EK=BK=,∴CK=4﹣=,
    ∴tan∠ECB==,
    过点G作GH⊥PD交PD的延长线于点H,
    设G(m,m2﹣5m+4),
    ∴=,
    解得m=2(舍)或m=5,
    ∴G(5,4),
    设直线BG的解析式为y=kx+n,
    ∴,解得,
    ∴y=4x﹣16.
    解:(1)将A(﹣2,0),B(4,0)代入y=ax2﹣x+c,
    得,解得,
    ∴抛物线解析式为y=eq \f(1,2)x2﹣x﹣4,
    当x=2时,y=﹣4,
    ∴D(2,﹣4),
    设直线AD的解析式为y=kx+b,
    将A(﹣2,0)D(2,﹣4)代入,
    得,解得,
    ∴直线AD的解析式为y=﹣x﹣2;
    (2)根据题意作图,如图1,
    在y=﹣x﹣2上,当x=0时,y=﹣2,
    ∴AD与y轴的交点M的坐标为(0,﹣2),
    ∴OA=OM,∠AOM=90°,
    ∴∠OAB=45°,
    ∵PE∥x轴,PF∥y轴,
    ∴∠PEF=∠OAB=45°,∠EPF=90°,
    ∴PF=PE,
    设P(x,eq \f(1,2)x2﹣x﹣4),F(x,﹣x﹣2),∴PF=﹣eq \f(1,2)x2+2,
    ∵P在AD的下方,∴﹣2<x<2,
    当x=0时,PF有最大值为2,此时PF+PE最大,
    ∴P(0,﹣4);
    (3)在BO上截取ON=OA,连接CN,过点A作AH⊥CN,如图2,
    ∵点A(﹣2,0),点C(0,﹣4),
    ∴OA=2,OC=4,
    ∴AC=2eq \r(5),
    ∵ON=OA,∠CON=∠COA=90°,OC=OC,
    ∴△OCN≌△OCA(SAS),
    ∴∠ACO=∠NCO,CN=AC=2eq \r(5),
    ∴∠NCA=2∠ACO,
    ∵∠QAB=2∠ACO,
    ∴∠QAB=∠NCA,
    ∵S△ANC=eq \f(1,2)AN×OC=eq \f(1,2)AH×CN,
    ∴AH=eq \f(8\r(5),5),∴CH=eq \f(6\r(5),5),
    ∴tan∠NCA=eq \f(4,3),
    如图3,当点Q在AB的下方时,设AQ与y轴交于点I,
    ∵∠QAB=∠NCA,
    ∴tan∠NCA=tan∠QAB=eq \f(4,3),∴OI=eq \f(8,3),∴点I(0,﹣eq \f(8,3)),
    又∵点A(﹣2,0),
    ∴直线AQ解析式为:y=﹣eq \f(4,3)x﹣,联立方程组得:
    ,解得:或 (不合题意舍去),
    ∴点Q坐标为(eq \f(4,3),﹣eq \f(40,9)),
    当点Q在AB的上方时,同理可求直线AQ解析式为:y=eq \f(4,3)x+eq \f(8,3),
    联立方程组得:
    ,解得: (不合题意舍去)或,
    ∴点Q坐标为(,),
    综上所述:点Q的坐标为(,﹣)或(,).
    解:(1)∵抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m),
    ∴m=12﹣4×1+c,m=k×1,
    ∴c=m+3,k=m;
    (2)∵直线x=m﹣1交直线l于点A,
    ∴y=m(m﹣1)=m2﹣m,
    ∴A(m﹣1,m2﹣m),
    ∵直线x=m﹣1交抛物线于点B,
    ∴y=x2﹣4x+m+3=(m﹣1)2﹣4(m﹣1)+m+3=m2﹣5m+8,
    ∴B(m﹣1,m2﹣5m+8),
    ∴AB=﹣4m+8,
    ∵过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C,
    ∴C(0,m2﹣m),点M的纵坐标与点A的纵坐标相等,
    ∴m2﹣m=x2﹣4x+m+3,
    解得:x1=m+1,x2=﹣m+3,
    ∴M(m+1,m2﹣m),N(﹣m+3,m2﹣m),
    ∴AM=m+1﹣(m﹣1)=2,
    ∴==﹣2m+4,
    ∵﹣2<0,且﹣1≤m<0,
    ∴的值随着m的增大而减小,
    当m=﹣1时,=﹣2×(﹣1)+4=6,
    当m=0时,=﹣2×0+4=4,
    ∴4≤≤6;
    (3)∠MEN=2∠ABC.理由如下:
    ∵BD∥x轴,
    ∴点D的纵坐标与点B的纵坐标相等,
    ∴m2﹣5m+8=x2﹣4x+m+3,解得:x1=m﹣1,x2=﹣m+5,
    ∴D(﹣m+5,m2﹣5m+8),
    ∵点E是线段BD的中点,
    ∴E(2,m2﹣5m+8),
    如图,设直线x=2交直线MN于点F,则F(2,m2﹣m),
    ∴MF=NF=﹣m+1,EF=m2﹣5m+8﹣(m2﹣m)=﹣4m+8,
    ∵AC=0﹣(m﹣1)=﹣m+1,AB=﹣4m+8,
    ∴tan∠ABC==,
    ∵tan∠MEF==,tan∠NEF==,
    ∴∠MEF=∠NEF=∠ABC,
    ∴∠MEN=2∠ABC.
    解:(1)∵将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处,点A的坐标为(3,0),点D的坐标为(1,0),
    ∴点E的坐标为(﹣1,0).
    将A(3,0),E(﹣1,0)代入y=ax2+bx+3,
    得:,解得:,
    ∴抛物线的解析式为y=﹣x2+2x+3.
    (2)当x=0时,y=﹣1×(0)2+2×0+3=3,
    ∴点B的坐标为(0,3).
    设直线AB的解析式为y=mx+n(m≠0),
    将A(3,0),B(0,3)代入y=mx+n,
    得:,解得:,
    ∴直线AB的解析式为y=﹣x+3.
    ∵点C在直线AB上,CD⊥x轴于点D(1,0),当x=1时,y=﹣1×1+3=2,
    ∴点C的坐标为(1,2).
    ∵点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(1,2),点E的坐标为(﹣1,0),
    ∴AE=4,OB=3,CD=2,
    ∴S△BCE=S△ABE﹣S△ACE=eq \f(1,2)AEOB﹣eq \f(1,2)AECD=eq \f(1,2)×4×3﹣eq \f(1,2)×4×2=2,
    ∴△BCE的面积为2.
    (3)存在,理由如下:
    ∵点A的坐标为(3,0),点B的坐标为(0,3),
    ∴OA=OB=3.
    在Rt△AOB中,∠AOB=90°,OA=OB,
    ∴∠BAE=45°.
    ∵点P在抛物线上,
    ∴设点P的坐标为(m,﹣m2+2m+3).
    ①当点P在x轴上方时记为P1,过点P1作P1M⊥x轴于点M,
    在Rt△EMP1中,∠P1EA=45°,∠P1ME=90°,
    ∴EM=P1M,即m﹣(﹣1)=﹣m2+2m+3,
    解得:m1=﹣1(不合题意,舍去),m2=2,
    ∴点P1的坐标为(2,3);
    ②当点P在x轴下方时记为P2,过点P2作P2N⊥x轴于点N,
    在Rt△ENP2中,∠P2EN=45°,∠P2NE=90°,
    ∴EN=P2N,即m﹣(﹣1)=﹣(﹣m2+2m+3),
    解得:m1=﹣1(不合题意,舍去),m2=4,
    ∴点P2的坐标为(4,﹣5).
    综上所述,抛物线上存在一点P,使∠PEA=∠BAE,点P的坐标为(2,3)或(4,﹣5).
    解:(1)∵抛物线y=mx2+3mx﹣2m+1的图象交x轴于点A(x1,0),B(x2,0),
    ∴x1,x2是方程mx2+3mx﹣2m+1=0的两根,
    ∴x1+x2=﹣3,x1x2=.
    ∵x2﹣x1=5,
    ∴=25.即:﹣4x1x2=25,
    ∴9﹣4×=25.解得:m=﹣eq \f(1,2).
    ∴抛物线的解析式为y=﹣eq \f(1,2)x2﹣eq \f(3,2)x+2.
    (2)S△DCE:S△BCE存在最大值eq \f(4,5),此时点D的坐标为(﹣2,3),理由:
    令y=0,则﹣eq \f(1,2)x2﹣eq \f(3,2)x+2=0,解得:x=﹣4或1,
    ∴A(﹣4,0),B(1,0),令x=0,则y=2,∴C(0,2).
    设直线AC的解析式为y=kx+b,
    ∴,解得:,
    ∴直线AC的解析式为y=eq \f(1,2)x+2.
    过点D作DH⊥x轴于点H,交AC于点M,过点B作BN⊥x轴于点B,交直线AC于点N,如图,
    则DM∥BN,∴△EDM∽△EBN,
    ∴.
    设D(a,﹣eq \f(1,2)a2﹣eq \f(3,2)a+2),则M(a,﹣eq \f(1,2)a+2),
    ∴DM=(﹣eq \f(1,2)a2﹣eq \f(3,2)a+2)﹣(﹣eq \f(1,2)a+2)=﹣eq \f(1,2)a2﹣2a.
    当x=1时,y=eq \f(1,2)×1+2=eq \f(5,2),∴N(1,eq \f(5,2)).∴BN=eq \f(5,2).
    ∵等高的三角形的面积比等于底的比,
    ∴S△DCE:S△B∁E=.
    ∴S△DCE:S△B∁E=﹣eq \f(1,5)a2﹣eq \f(4,5)a=﹣eq \f(1,5)(a+2)2+eq \f(4,5),
    ∵﹣eq \f(1,5)<0,
    ∴当a=﹣2时,S△DCE:S△BCE有最大值为eq \f(4,5),此时点D(﹣2,3);
    (3)第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣,理由:
    ∵A(﹣4,0),B(1,0),C(0,2),
    ∴OA=4,OB=1,OC=2,
    ∴AC=2eq \r(5),BC=eq \r(5),AB=OA+OB=5.
    ∵AC2+BC2=25=AB2,
    ∴△ABC为直角三角形,∠ACB=90°.
    取AB的中点P,连接OP,则P(﹣eq \f(3,2),0),
    ∴OP=eq \f(3,2).∴PA=PB=PC=eq \f(5,2),
    ∴∠BAC=∠PCA.
    ∵∠CPB=∠BAC+∠PCA,
    ∴∠CPB=2∠BAC.
    过点D作DR⊥y轴于点R,延长交AC于点G,如图,
    ①当∠DCF=2∠BAC时,
    设D(m,﹣eq \f(1,2)m2﹣eq \f(3,2)m+2),则DR=﹣m,OR=﹣eq \f(1,2)m2﹣eq \f(3,2)m+2,
    ∴CR=OR﹣OC=﹣eq \f(1,2)m2﹣eq \f(3,2)m.
    ∵DR⊥y轴,OA⊥y轴,
    ∴DR∥AB,
    ∴∠G=∠BAC.
    ∵∠DCF=∠G+∠CDG,∠DCF=2∠BAC,
    ∴∠CDG=∠G=∠BAC.
    ∵tan∠BAC=,∴tan∠CDR=eq \f(1,2).
    ∴,得:m=﹣2或0(舍去),
    ∴m=﹣2.
    ∴点D的横坐标为﹣2;
    ②当∠FDC=2∠BAC时,
    ∵∠CPB=2∠BAC,
    ∴∠FDC=∠CPB.
    ∵tan∠CPB=eq \f(4,3),∴tan∠FDC=eq \f(4,3),
    ∵tan∠FDC=,∴,
    设FC=4n,则DF=3n,∴CD=5n.
    ∵tan∠G=tan∠BAC=eq \f(1,2),
    ∴tan∠G=,
    ∴FG=6n.
    ∴CG=FG﹣FC=2n.
    ∵tan∠G=,∴RC=n,
    ∴DR==n,∴,
    解得:a=﹣eq \f(29,11)或0(舍去),
    ∴a=﹣eq \f(29,11),即点D的横坐标为﹣eq \f(29,11),
    综上,第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣eq \f(29,11).
    解:(1)∵抛物线与x轴交于点A(﹣1,0),B(3,0),
    ∴设y=a(x+1)(x﹣3),把C(0,3)代入得,3=a×(0+1)×(0﹣3),
    解得:a=﹣1,
    ∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    (2)∵直线l:y=k(x﹣3)+3,当x=3时,y=3,
    ∴点F(3,3)是直线l上一定点,
    如图1,连接BF,则BF∥y轴,BF=3,
    ∵S△BDF﹣S△BEF=S△BDE=6,
    ∴eq \f(1,2)BF(3﹣xD)﹣eq \f(1,2)BF(3﹣xE)=6,即eq \f(3,2)(xE﹣xD)=6,
    ∴xE﹣xD=4,
    联立得:﹣x2+2x+3=k(x﹣3)+3,
    整理得:x2+(k﹣2)x﹣3k=0,
    ∴xD+xE=2﹣k,xDxE=﹣3k,
    ∵(xD+xE)2﹣4xDxE=(xE﹣xD)2,
    ∴(2﹣k)2﹣4×(﹣3k)=42,解得:k1=﹣4+2eq \r(7),k2=﹣4﹣2eq \r(7),
    ∵k>0,∴k=﹣4+2eq \r(7);
    (3)设M(x1,﹣x12+2x1+3),N(x2,﹣x22+2x2+3),
    如图2,分别过点M、N作ME⊥x轴于点E,NQ⊥BF于点Q,
    ∵C(0,3),B(3,0),
    ∴OB=OC,
    ∵∠BOC=90°,
    ∴∠OBC=45°,∠CBQ=45°,
    ∵∠MBC=∠NBC,
    ∴∠MBE=∠NBQ,
    ∴tan∠MBE=tan∠NBQ,
    ∴=,
    ∴=,即=,
    ∴x1+x2+x1x2=0,
    由(2)知:x1+x2=2﹣k,x1x2=﹣3k,
    ∴2﹣k﹣3k=0,解得:k=eq \f(1,2),
    ∴直线l的解析式为y=eq \f(1,2)(x﹣3)+3,
    设直线BC的解析式为y=mx+n,
    则,解得:,
    ∴直线BC的解析式为y=﹣x+3,
    联立方程组得,解得:,
    ∴P点的坐标为(1,2).

    相关试卷

    2025年中考数学二轮复习压轴题培优练习 图形周长问题(含答案):

    这是一份2025年中考数学二轮复习压轴题培优练习 图形周长问题(含答案),共18页。

    2025年中考数学二轮复习压轴题培优练习 圆存在问题(含答案):

    这是一份2025年中考数学二轮复习压轴题培优练习 圆存在问题(含答案),共22页。

    2025年中考数学二轮复习压轴题培优练习 动点综合问题(含答案):

    这是一份2025年中考数学二轮复习压轴题培优练习 动点综合问题(含答案),共19页。试卷主要包含了Q,则线段PQ的长度PQ=).等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map