终身会员
搜索
    上传资料 赚现金

    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(原卷版).docx
    • 解析
      人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(解析版).docx
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(原卷版)第1页
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(原卷版)第2页
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(原卷版)第3页
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(解析版)第1页
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(解析版)第2页
    人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.2 双曲线优秀综合训练题

    展开

    这是一份人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.2 双曲线优秀综合训练题,文件包含人教版高中数学选择性必修一精讲精练322双曲线的简单几何性质精练原卷版docx、人教版高中数学选择性必修一精讲精练322双曲线的简单几何性质精练解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。


    1.(2023秋·浙江台州·高二台州市书生中学校考期末)已知双曲线的离心率为,则该双曲线的渐近线方程为( )
    A.B. C.D.
    2.(2023·全国·高三专题练习)若双曲线(a>0,b>0)的离心率为2,则其两条渐近线所成的锐角为( )
    A.B.C.D.
    3.(2023春·江西抚州·高二南城县第二中学校考阶段练习)(多选)已知双曲线一条渐近线与实轴夹角为,且,则离心率e的可能取值是( )
    A.B.C.D.
    4.(2023·吉林长春·长春吉大附中实验学校校考模拟预测)已知双曲线(,)的渐近线与交于第一象限内的两点,,若为等边三角形,则双曲线的离心率( )
    A.B.C.2D.
    5.(2023秋·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知双曲线的左、右焦点分别为,,点在上,且,,则的渐近线方程为( )
    A.B.
    C.D.
    6.(2023·陕西西安·西安市大明宫中学校考模拟预测)已知双曲线的左、右焦点分别为为坐标原点,过原点的直线与相交于两点,,四边形的面积等于,则的离心率等于( )
    A.B.C.2D.
    7.(2023·山东·模拟预测)过双曲线的左焦点作直线,与双曲线交于两点,若,则这样的直线有( )
    A.1条B.2条C.3条D.4条
    8.(2023春·陕西安康)已知双曲线:的左焦点为,右焦点为,点在双曲线的一条渐近线上,为坐标原点.若,则的面积为( )
    A.B.1C.D.
    9.(2023秋·高二单元测试)双曲线C:的左,右焦点分别为,,过作垂直于x轴的直线交双曲线于A,B两点,则的内切圆半径等于( )
    A.B.C.D.2
    10.(2023秋·河南平顶山·高二统考期末)已知双曲线C:的焦点到渐近线的距离为,直线l与C相交于A,B两点,若线段的中点为,则直线l的斜率为( )
    A.B.1C.D.2
    11.(2023春·安徽安庆·高二安徽省宿松中学校考开学考试)已知双曲线与直线相交于A、B两点,弦AB的中点M的横坐标为,则双曲线C的渐近线方程为( )
    A.B.C.D.
    12.(2023春·河南周口·高二校考开学考试)过点作斜率为1的直线,交双曲线于A,B两点,点M为AB的中点,则该双曲线的离心率为( )
    A.B.C.D.
    13.(2022秋·高二课时练习)如图是等轴双曲线形拱桥,现拱顶离水面,水面宽.若水面下降,则水面宽是( )(结果精确到)(参考数值:,,)
    A.B.C.D.
    14.(2022·全国·高三专题练习)双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为( )
    A.B.C.D.
    15.(2022·全国·校联考模拟预测)北京冬奥会火种台(图1)以“承天载物”为设计理念,创意灵感来自中国传统青铜礼器——尊的曲线造型,基座沉稳,象征“地载万物”,顶部舒展开阔,寓意迎接纯洁的奥林匹克火种.如图2,一种尊的外形近似为双曲线的一部分绕着虚轴旋转所成的曲面,尊高50cm,上口直径为,底座直径为25cm,最小直径为20cm,则这种尊的轴截面的边界所在双曲线的离心率为( )
    A.2B.
    C.D.
    16.(2023秋·山西太原·高二校考期末)(多选)直线l交双曲线 于A、B两点,且为AB的中点,则l的斜率不可能为( )
    A.4B.3C.2D.1
    17.(2022秋·山东青岛·高二统考期末)(多选)已知双曲线,点,在上,的中点为,则( )
    A.的渐近线方程为B.的右焦点为
    C.与圆没有交点D.直线的方程为
    18.(2023秋·云南楚雄·高二统考期末)若直线与单位圆(圆心在原点)和曲线均相切,则直线的一个方程可以是
    19.(2022·全国·高三专题练习)已知椭圆与双曲线有公共焦点,点在双曲线上,则该双曲线在点处的切线的斜率为 .
    20.(2023春·湖南衡阳·高二衡阳市八中校考阶段练习)不与轴重合的直线过点,双曲线上存在两点关于对称,中点的横坐标为.若,则双曲线的离心率为 .
    21.(2023春·福建福州·高三校考阶段练习)不与x轴重合的直线l过点N(,0)(xN≠0),双曲线C:(a>0,b>0)上存在两点A、B关于l对称,AB中点M的横坐标为.若,则C的离心率为 .
    22.(2023春·山东淄博·高三山东省淄博实验中学校联考阶段练习)已知双曲线的左、右焦点分别为,,过作直线l与双曲线的左、右两支分别交于A,B两点,设P为线段AB的中点,若,则双曲线的离心率为 .
    23(2022·高二课时练习)已知双曲线被直线截得的弦AB,弦的中点为,则直线AB的斜率为 .
    24(2023春·广东广州·高二执信中学校考期末)费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P为双曲线(,为焦点)上一点,点P处的切线平分.已知双曲线C:,O为坐标原点,l是点处的切线,过左焦点作l的垂线,垂足为M,则 .
    25.(2023·云南·校联考模拟预测)已知双曲线方程为,左焦点关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为 .
    26.(2023秋·高二课时练习)已知双曲线,直线,若直线与双曲线的右支有两个交点,求的取值范围 .
    27(2023秋·高二课时练习)已知双曲线,直线,若直线与双曲线的交点分别在两支上,求的取值范围 .
    28.(2023秋·高二课时练习)经过点作直线交双曲线于两点,且为中点.
    (1)求直线的方程.
    (2)求线段的长.
    29.(2023·江苏·高二专题练习)双曲线的焦点的坐标分别为和,离心率为,求:
    (1)双曲线的方程及其渐近线方程;
    (2)已知直线与该双曲线交于交于两点,且中点,求直线AB的弦长.
    30.(2023广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点所到的时间比其他两个观测点晚期4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上).
    1.(2023春·河南洛阳·高二统考期末)已知双曲线(,)的离心率,是双曲线上关于原点对称的两点,点是双曲线上异于的动点,直线的斜率分别为,,若,则的取值范围是( )
    A.B.C.D.
    2.(2023·全国·高二专题练习)直线与曲线的公共点的个数是( ).
    A.1B.2C.3D.4
    3.(2023秋·高二单元测试)已知点F是双曲线()的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若是锐角三角形,则该双曲线的离心率e的取值范围是( )
    A.B.
    C.D.
    4.(2023·河南·校联考模拟预测)是双曲线的左焦点,是坐标原点,直线与双曲线的左、右两支分别交于两点,且,则双曲线的离心率为( )
    A.B.C.D.
    5.(2023春·内蒙古赤峰·高二赤峰红旗中学松山分校校联考期末)已知双曲线C:的左、右焦点分别为,,过点且与x轴垂直的直线l与双曲线C交于A,B两点,若,则双曲线C的离心率为( )
    A.B.C.D.
    6.(2023春·湖北武汉·高二武汉市第十一中学阶段练习)过双曲线:的左焦点F作的其中一条渐近线的垂线,垂足为M,与的另一条渐近线交于点N,且,则的渐近线方程为( )
    A.B.
    C.D.
    7.(2023·江西抚州)如图,已知,分别为双曲线C:的左、右焦点,过作圆O:的切线,切点为A,且切线在第三象限与C及C的渐近线分别交于点M,N,则( )
    A.直线OA与双曲线C有交点
    B.若,则
    C.若,则C的渐近线方程为
    D.若,则C的离心率为
    8.(2022秋·甘肃兰州·高二统考期中)(多选)已知、是双曲线(,)的左、右焦点,过作双曲线一条渐近线的垂线,垂足为点,交另一条渐近线于点,且,则该双曲线的离心率为( ).
    A.B.C.D.
    9.(2023春·湖南湘潭·高二湘潭县一中校联考期末)已知双曲线的左、右焦点分别为,过点作直线垂直于双曲线的一条渐近线,直线交双曲线于点,若,则双曲线的渐近线方程可能为( )
    A.B.
    C.D.
    10.(2022秋·高二课时练习)过双曲线的右焦点作直线与双曲线交于两点,若,则这样的直线有( )
    A.一条B.两条
    C.三条D.四条
    11.(2023春·四川自贡·高二统考期末)已知是双曲线的左焦点,过倾斜角为的直线与双曲线渐近线相交于,两点,为坐标原点,则的面积为( )
    A.B.C.D.
    12.(2023·全国·模拟预测)在平面直角坐标系中,点在双曲线上,的一条渐近线的方程为,左、右焦点分别为,,过点作斜率为的直线,分别交的两条渐近线于两点,则下列结论正确的个数为( )
    ①双曲线的离心率为;
    ②直线的方程为;
    ③直线截双曲线所得弦长为3;
    ④.
    A.1B.2C.3D.4
    13.(2023·全国·高三专题练习)设双曲线的右焦点为,,若直线与的右支交于两点,且为的重心,则的离心率的取值范围为( )
    A.B.
    C.D.
    14.(2023春·江苏南通·高二期末)(多选)双曲线的离心率为e,若过点能作该双曲线的两条切线,则e可能取值为( ).
    A.B.C.D.2
    15.(2023·全国·高三专题练习)(多选)双曲线具有如下光学性质:如图,是双曲线的左、右焦点,从右焦点发出的光线m交双曲线右支于点P,经双曲线反射后,反射光线n的反向延长线过左焦点.若双曲线C的方程为,则( )
    A.双曲线的焦点到渐近线的距离为
    B.若,则
    C.当n过点时,光线由所经过的路程为8
    D.反射光线n所在直线的斜率为k,则
    13.(2023春·内蒙古巴彦淖尔·高二校考期末)已知双曲线C:的左、右焦点分别为,,过点作斜率为的直线交C右支于M,N两点,且.写出C的一条渐近线方程 .
    14.(2023·江西赣州·统考模拟预测)已知双曲线C:,过双曲线C的右焦点F作直线交双曲线C的渐近线于A,B两点,其中点A在第一象限,点B在第四象限,且满足,,则双曲线C的离心率为 .
    15.(2022·全国·高三专题练习)过点作双曲线: 的两条切线,切点分别为A,B,求直线AB的方程 .

    相关试卷

    人教A版 (2019)必修 第一册3.2 函数的基本性质课后作业题:

    这是一份人教A版 (2019)必修 第一册3.2 函数的基本性质课后作业题,文件包含人教版高中数学必修一精讲精练322函数的奇偶性精讲原卷版docx、人教版高中数学必修一精讲精练322函数的奇偶性精讲解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质测试题:

    这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质测试题,文件包含人教版高中数学必修一精讲精练322函数的奇偶性精练原卷版docx、人教版高中数学必修一精讲精练322函数的奇偶性精练解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    人教A版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 集合间的基本关系当堂达标检测题:

    这是一份人教A版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 集合间的基本关系当堂达标检测题,文件包含人教版高中数学必修一精讲精练12集合间的关系精练原卷版docx、人教版高中数学必修一精讲精练12集合间的关系精练解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版高中数学选择性必修一 精讲精练3.2.2 双曲线的简单几何性质(精练)(2份,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map