终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用)

    立即下载
    加入资料篮
    第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用)第1页
    第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用)第2页
    第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用)

    展开

    这是一份第10讲:拓展一:定义题(解答题)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用),共7页。试卷主要包含了为无穷数列的指数型母函数,定义在上的函数,如果满足,已知函数,,则称为的“重覆盖函数” .,定义,对于定义在区间上的函数,若等内容,欢迎下载使用。
    (1)证明:;
    (2)记.证明:(其中i为虚数单位);
    (3)以函数为指数型母函数生成数列,.其中称为伯努利数.证明:.且.
    2.(2024上·全国·高三校联考竞赛)设有两个集合,如果对任意,存在唯一的,满足,那么称是一个的函数.设是的函数,是的函数,那么是的函数,称为和的复合,记为.如果两个的函数对任意,都有,则称.
    (1)对,分别求一个,使得对全体恒成立;
    (2)设集合和的函数以及的函数.
    (i)对,构造的函数以及的函数,满足;
    (ii)对,构造的函数以及的函数,满足,并且说明如果存在其它的集合满足存在的函数以及的函数,满足,则存在唯一的的函数满足.
    3.(2024下·湖北·高一湖北省汉川市第一高级中学校联考开学考试)定义在上的函数,如果满足:对任意,存在常数,恒成立,则称是上的有界函数,其中称为的上界.
    (1)若在上是以2为上界的有界函数,求的取值范围;
    (2)已知,为正整数,是否存在整数,使得对,不等式恒成立?若存在,求出的值;若不存在,请说明理由.
    4.(2024上·安徽·高一校联考期末)对于函数,为函数定义域,若存在正常数,使得对任意的,都有成立,我们称函数为“同比不增函数”.
    (1)若函数是“同比不增函数”,求的取值范围;
    (2)是否存在正常数,使得函数为“同比不增函数”,若存在,求的取值范围;若不存在,请说明理由.
    5.(2024上·江苏常州·高一统考期末)中心对称函数指的是图形关于某个定点成中心对称的函数,我们学过的奇函数便是一类特殊的中心对称函数,它的对称中心为坐标原点. 类比奇函数的代数定义,我们可以定义中心对称函数:设函数的定义域为,若对,都有,则称函数为中心对称函数,其中为函数的对称中心. 比如,函数就是中心对称函数,其对称中心为.
    (1)判断是否为中心对称函数(不用写理由),若是,请写对称中心;
    (2)若定义在上的函数为中心对称函数,求的值;
    (3)判断函数是否为中心对称函数,若是,求出其对称中心;若不是,请说明理由.
    6.(2024上·山东济宁·高一统考期末)已知函数.
    (1)求函数的定义域;
    (2)试判断的单调性,并说明理由;
    (3)定义:若函数在区间上的值域为,则称区间是函数的“完美区间”.若函数存在“完美区间”,求实数b的取值范围.
    7.(2024·云南昆明·统考模拟预测)我们把(其中,)称为一元n次多项式方程.代数基本定理:任何复系数一元次多项式方程(即,,,…,为实数)在复数集内至少有一个复数根;由此推得,任何复系数一元次多项式方程在复数集内有且仅有n个复数根(重根按重数计算).那么我们由代数基本定理可知:任何复系数一元次多项式在复数集内一定可以分解因式,转化为n个一元一次多项式的积.即,其中k,,,,,……,为方程的根.进一步可以推出:在实系数范围内(即,,,…,为实数),方程的有实数根,则多项式必可分解因式.例如:观察可知,是方程的一个根,则一定是多项式的一个因式,即,由待定系数法可知,.
    (1)解方程:;
    (2)设,其中,,,,且.
    (i)分解因式:;
    (ii)记点是的图象与直线在第一象限内离原点最近的交点.求证:当时,.
    8.(2024上·江苏苏州·高一校考期末)已知函数和的定义域分别为和,若对任意,恰好存在个不同的实数,,,,使得(其中,,,,),则称为的“重覆盖函数” .
    (1)判断是否为的“重覆盖函数”,如果是,求出的值;如果不是,说明理由.
    (2)若为的“2重覆盖函数”,求实数的取值范围.
    9.(2024上·广东·高一统考期末)定义:函数若存在正常数,使得,为常数,对任意恒成;则称函数为“代阶函数”.
    (1)判断下列函数是否为“代阶函数”?并说明理由.
    ①,②.
    (2)设函数为“代阶函数”,其中是奇函数,是偶函数.若,求的值.
    10.(2024上·上海·高一上海市洋泾中学校考期末)对于定义在区间上的函数,若.
    (1)已知,,试写出、的表达式;
    (2)设且,函数,,如果与恰好为同一函数,求的取值范围;
    (3)若,存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”,已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的,如果不是,请说明理由.
    11.(2024上·广东肇庆·高一统考期末)对于函数,若定义域内存在实数,满足,则称为“函数”.
    (1)已知函数,试判断是否为“函数”,并说明理由;
    (2)已知函数为上的奇函数,函数,为其定义域上的“函数”,求实数的取值范围.
    12.(2024上·北京顺义·高一统考期末)对于定义域为I的函数,如果存在区间,使得在区间上是单调函数,且函数,的值域是,则称区间是函数的一个“优美区间”.
    (1)判断函数和函数是否存在“优美区间”?(直接写出结论,不要求证明)
    (2)如果函数在R上存在“优美区间”,求实数a的取值范围.

    相关试卷

    第10讲:拓展三:通过求二阶导函数解决导数问题(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用):

    这是一份第10讲:拓展三:通过求二阶导函数解决导数问题(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用),共9页。试卷主要包含了函数极值的第二判定定理,二次求导使用背景,解题步骤等内容,欢迎下载使用。

    第10讲:拓展一:定义题(解答题)(解析版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用):

    这是一份第10讲:拓展一:定义题(解答题)(解析版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用),共19页。试卷主要包含了为无穷数列的指数型母函数,定义在上的函数,如果满足,已知函数,,则称为的“重覆盖函数” .,定义,对于定义在区间上的函数,若等内容,欢迎下载使用。

    第11讲:第二章 函数与基本初等函数 章节总结 (精讲)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用):

    这是一份第11讲:第二章 函数与基本初等函数 章节总结 (精讲)(原卷版)-备战2025年高考数学一轮复习精讲精练(知识·题型·分层练,新高考专用),共17页。试卷主要包含了求函数的值域等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map