终身会员
搜索
    上传资料 赚现金
    苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)
    立即下载
    加入资料篮
    苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)01
    苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)02
    苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)

    展开
    这是一份苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析),共29页。

    目录
    TOC \ "1-3" \h \u \l "_Tc31892" 【典型例题】 PAGEREF _Tc31892 \h 1
    \l "_Tc22888" 【类型一 有切点,连半径,证垂直】 PAGEREF _Tc22888 \h 1
    \l "_Tc26962" 【类型二 无切点,作垂直,证半径】 PAGEREF _Tc26962 \h 13
    【典型例题】
    【类型一 有切点,连半径,证垂直】
    例题:(2023秋·江苏·九年级专题练习)如图,是的直径,C,D都是上的点,平分,过点D作的垂线交的延长线于点E,交的延长线于点F.
    (1)求证:是的切线;
    (2)若,求的值.
    【变式训练】
    1.(2023秋·江苏·九年级专题练习)如图,是的直径,半径为2,交于点D,且D是的中点,于点E,连接.

    (1)求证:是的切线.
    (2)若,求的长.
    2.(2023秋·江苏·九年级专题练习)如图,在中,,以为直径的与交于点D,与边交于点E,过点D作的垂线,垂足为F.
    (1)求证:为的切线;
    (2)若,求的半径.
    3.(2023秋·江苏·九年级专题练习)如图,已知内接于,是的直径,的平分线交于点,交于点,连接,作,交的延长线于点.
    (1)求证:是的切线;
    (2)若,,求的半径.
    4.(2022秋·山西朔州·九年级校考期中)如图,在中,,的平分线交于点E,过点E作的垂线交于点F,是的外接圆.
    (1)求证:是的切线;
    (2)过点E作于点H,若,求的半径.
    5.(2023秋·江苏·九年级专题练习)如图,在中,,点在边上,平分,交于,是的外接圆.
    (1)求证:是的切线;
    (2)若,,求的半径长.
    6.(2023秋·江苏·九年级专题练习)如图,以线段为直径作,交射线于点,平分交于点,过点作直线于点,交的延长线于点.连接并延长交于点M.
    (1)求证:直线是的切线;
    (2)求证:;
    (3)若,,求的长.
    【类型二 无切点,作垂直,证半径】
    例题:(2022春·广东广州·九年级广州市第八十九中学校考开学考试)如图,在中,,是的角平分线,以为圆心,为半径作,求证:是的切线.

    【变式训练】
    1.(2023秋·广东河源·九年级校考期末)如图,为的角平分线上的一点, 于点,以为圆心为半径作,求证:与相切.
    2.(2022秋·福建福州·九年级校考阶段练习)如图中,,平分交于点,以点为圆心,为半径作交于点.
    (1)求证:与相切;
    (2)若,,试求的长.
    3.(2023·湖北恩施·统考中考真题)如图,是等腰直角三角形,,点O为的中点,连接交于点E, 与相切于点D.
    (1)求证:是的切线;
    (2)延长交于点G,连接交于点F,若,求的长.
    4.(2022秋·九年级单元测试)如图,是的直径,,分别切于点,,交,于点,,平分.
    (1)求证:是的切线;
    (2)若,,求的长.
    5.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)如图,点为正方形对角线上一点,以为圆心,的长为半径的与相切于点.
    (1)求证:与相切;
    (2)若的半径为,求正方形的边长.
    专题09 类比归纳专题:切线证明的常用方法压轴题二种模型全攻略
    【考点导航】
    目录
    TOC \ "1-3" \h \u \l "_Tc31892" 【典型例题】 PAGEREF _Tc31892 \h 1
    \l "_Tc22888" 【类型一 有切点,连半径,证垂直】 PAGEREF _Tc22888 \h 1
    \l "_Tc26962" 【类型二 无切点,作垂直,证半径】 PAGEREF _Tc26962 \h 13
    【典型例题】
    【类型一 有切点,连半径,证垂直】
    例题:(2023秋·江苏·九年级专题练习)如图,是的直径,C,D都是上的点,平分,过点D作的垂线交的延长线于点E,交的延长线于点F.
    (1)求证:是的切线;
    (2)若,求的值.
    【答案】(1)见解析
    (2)2
    【分析】(1)如图1,连接,由平分,可得,由,可得,,则,,进而结论得证;
    (2)如图2,连接,交于H,由是的直径,可得,由勾股定理得,,由,可得,,即,,是的中位线,则,,证明四边形是矩形,则.
    【详解】(1)证明:如图1,连接,
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵是半径,
    ∴是的切线;
    (2)解:如图2,连接,交于H,
    ∵是的直径,
    ∴,
    由勾股定理得,,
    ∵,
    ∴,
    ∴,即,
    ∴,

    ∴是的中位线,
    ∴,
    ∴,
    ∵,
    ∴四边形是矩形,
    ∴.
    【点睛】本题考查了切线的判定,角平分线,等边对等角,垂径定理,平行线的判定与性质,矩形的判定与性质,中位线,勾股定理,直径所对的圆周角为直角等知识.解题的关键在于对知识的熟练掌握与灵活运用.
    【变式训练】
    1.(2023秋·江苏·九年级专题练习)如图,是的直径,半径为2,交于点D,且D是的中点,于点E,连接.

    (1)求证:是的切线.
    (2)若,求的长.
    【答案】(1)见解析
    (2)
    【分析】(1)连接,利用三角形的中位线定理和平行线的性质得到,利用圆的切线的判定定理解答即可;
    (2)利用线段 垂直平分线的性质,等腰三角形的性质和含角的直角三角形的性质求,利用勾股定理求得,则.
    【详解】(1)证明:连接,如图,

    ∵D是的中点,
    ∴,
    ∵,
    ∴为的中位线,
    ∴,
    ∵,
    ∴,
    ∵为的半径,
    ∴是的切线;
    (2)解:∵是的直径,
    ∴,
    ∵D是的中点,
    ∴为的垂直平分线,
    ∴,
    ∴,
    ∵是的直径,半径为2,
    ∴.
    在中,.
    ∴,
    ∴.
    【点睛】本题主要考查了圆的有关性质,圆周角定理,三角形的中位线的性质定理,平行线的性质,圆的切线的判定定理,含角的直角三角形的性质,勾股定理,连接经过切点的半径是解决此类问题常添加的辅助线.
    2.(2023秋·江苏·九年级专题练习)如图,在中,,以为直径的与交于点D,与边交于点E,过点D作的垂线,垂足为F.
    (1)求证:为的切线;
    (2)若,求的半径.
    【答案】(1)见解析
    (2)
    【分析】(1)连接,根据是的直径,可得,再由三角形中位线定理可得,从而得到,即可求证;
    (2)连接,根据圆内接四边形的性质可得,从而得到,进而得到,继而得到的长,即可求解.
    【详解】(1)证明:连接,
    ∵是的直径,
    ∴,
    ∵,
    ∴点D是的中点,
    ∵点O是的中点,
    ∴是的中位线,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴为的半径;
    (2)解:连接,
    ∵四边形是的内接四边形,
    ∴,
    ∵,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴的半径是.
    【点睛】本题主要考查了切线的判定,圆内接四边形的性质,圆周角定理,等腰三角形的性质,熟练掌握切线的判定定理,圆内接四边形的性质,圆周角定理,等腰三角形的性质是解题的关键.
    3.(2023秋·江苏·九年级专题练习)如图,已知内接于,是的直径,的平分线交于点,交于点,连接,作,交的延长线于点.
    (1)求证:是的切线;
    (2)若,,求的半径.
    【答案】(1)见解析
    (2)15
    【分析】(1)连接,根据平分,,,证明即可;
    (2)设的半径为,则有,在中,,根据勾股定理建立方程,解方程即可求解.
    【详解】(1)解:连接,

    是的直径,
    ,即,
    平分,







    是的半径,
    是的切线.
    (2)设的半径为,
    则有,
    ∵是的切线.
    ∴,
    在中,,

    解得,
    的半径为.
    【点睛】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.
    4.(2022秋·山西朔州·九年级校考期中)如图,在中,,的平分线交于点E,过点E作的垂线交于点F,是的外接圆.
    (1)求证:是的切线;
    (2)过点E作于点H,若,求的半径.
    【答案】(1)见解析;
    (2)5;
    【分析】(1)连接,由于是角平分线,则有再证得,根据平行线的性质和切线的判定即可解答;
    (2)先证明,再根据勾股定理列方程求解即可;
    【详解】(1)证明:连接
    ∵平分




    ∴,
    又,即

    ∴是的切线
    (2)∵平分

    解得:
    故的半径为5
    【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质勾股定理,掌握切线的证明、角平分线的性质定理以及全等三角形的判定与性质、勾股定理是解题关键.
    5.(2023秋·江苏·九年级专题练习)如图,在中,,点在边上,平分,交于,是的外接圆.
    (1)求证:是的切线;
    (2)若,,求的半径长.
    【答案】(1)详见解析
    (2)3
    【分析】(1)连接,由于是角平分线,则有;而,就有,等量代换有,那么利用内错角相等,两直线平行,可得;又,所以,即是的切线;
    (2)利用勾股定理即可求出半径.
    【详解】(1)证明:连接.
    平分,

    又,




    又点在上,
    是的切线.
    (2)解:设的半径为,


    即,
    解得,
    的半径为3.
    【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.
    6.(2023秋·江苏·九年级专题练习)如图,以线段为直径作,交射线于点,平分交于点,过点作直线于点,交的延长线于点.连接并延长交于点M.
    (1)求证:直线是的切线;
    (2)求证:;
    (3)若,,求的长.
    【答案】(1)详见解析
    (2)详见解析
    (3)2
    【分析】(1)连接,由证明,得,即可证明直线是的切线;
    (2)由线段是的直径证明,再根据等角的余角相等证明,则;
    (3)由,证明,则是等边三角形,所以,则,所以,再证明,得.
    【详解】(1)证明:连接,则,

    平分,





    是的半径,且,
    直线是的切线.
    (2)证明:线段是的直径,


    ,,



    (3)解:,,

    是等边三角形,

    ,,






    【点睛】此题重点考查切线的判定、直径所对的圆周角是直角、等角的余角相等、等腰三角形的判定与性质、等边三角形的判定与性质、平行线的判定与性质、直角三角形中角所对的直角边等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.
    【类型二 无切点,作垂直,证半径】
    例题:(2022春·广东广州·九年级广州市第八十九中学校考开学考试)如图,在中,,是的角平分线,以为圆心,为半径作,求证:是的切线.

    【答案】证明过程见解析;
    【分析】题目并没有说明直线与有没有交点,所以过点作于点,然后证明即可.
    【详解】证明:如图:过点作于点,

    是的角平分线,,,

    是的切线.
    【点睛】本题考查圆的切线的判定知识.结合角平分线的性质,正确构造辅助线是解题的关键.
    【变式训练】
    1.(2023秋·广东河源·九年级校考期末)如图,为的角平分线上的一点, 于点,以为圆心为半径作,求证:与相切.
    【答案】见解析
    【分析】过点作于,根据证明,推出,即可证明与相切.
    【详解】证明:如图,过点作于,
    平分,

    又,,

    在与中,



    点D在上,
    又,
    与相切于点.
    【点睛】本题考查切线的判定,相似三角形的判定与性质,解题的关键是掌握切线的判定方法.
    2.(2022秋·福建福州·九年级校考阶段练习)如图中,,平分交于点,以点为圆心,为半径作交于点.
    (1)求证:与相切;
    (2)若,,试求的长.
    【答案】(1)见解析
    (2)
    【分析】(1)过作于,利用角平分线的性质定理可得即可证明:与相切;
    (2)在Rt中,由勾股定理可求出的长,设圆的半径为,利用切线长定理可求出,所以,,利用勾股定理建立方程求出,进而求出的长.
    【详解】(1)证明:过作于,


    平分交于点,

    与相切;
    (2)解:设圆的半径为,
    ,,,

    ,是圆的切线,




    在Rt中,,
    解得:,

    【点睛】本题考查了圆的切线的判定、角平分线的性质、切线长定理以及勾股定理的运用,解题的关键是构造直角三角形,利用勾股定理列方程.
    3.(2023·湖北恩施·统考中考真题)如图,是等腰直角三角形,,点O为的中点,连接交于点E, 与相切于点D.
    (1)求证:是的切线;
    (2)延长交于点G,连接交于点F,若,求的长.
    【答案】(1)见解析
    (2)
    【分析】(1)连接,过点O作于点P,根据等腰三角形的性质得到,推出,即可得到结论;
    (2)根据等腰直角三角形的性质求出,的长,勾股定理求出,连接,过O作于点H,利用面积法求出,勾股定理求出,即可根据等腰三角形的性质求出的长.
    【详解】(1)证明:连接,过点O作于点P,
    ∵与相切于点D.
    ∴,
    ∵是等腰直角三角形,,点O为的中点,
    ∴,
    ∴,即是的半径,
    ∴是的切线;
    (2)解:∵,,,
    ∴,,
    ∵点O为的中点,
    ∴,

    ∴,
    在中,
    连接,过O作于点H,
    ∴,

    ∵,
    ∴.

    【点睛】此题考查了判定直线是圆的切线,切线的性质定理,等腰直角三角形的性质,勾股定理,正确掌握各知识点是解题的关键.
    4.(2022秋·九年级单元测试)如图,是的直径,,分别切于点,,交,于点,,平分.
    (1)求证:是的切线;
    (2)若,,求的长.
    【答案】(1)见解析
    (2)
    【分析】(1)过点作于点,根据切线的性质由切于点可得,再根据角平分线定理得到,然后根据切线的判定定理得到是的切线;
    (2)过作于,根据切线的性质得到,则得到四边形为矩形,得到,所以,再利用切线长定理得,,所以,在中,利用勾股定理计算出,则,所以,然后中,利用勾股定理可计算出.
    【详解】(1)证明:如图,过点作于点,

    切于点,

    平分,

    为的半径,
    是的半径,
    是的切线;
    (2)解:如图,过作于,

    是的直径,,分别切于点,,
    ,,
    四边形为矩形,


    ,,为的切线,


    在中,,


    在中,.
    【点睛】本题主要考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线,也考查了切线的性质、切线长定理、勾股定理.
    5.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)如图,点为正方形对角线上一点,以为圆心,的长为半径的与相切于点.
    (1)求证:与相切;
    (2)若的半径为,求正方形的边长.
    【答案】(1)答案见解析
    (2)
    【分析】(1)过O作于H, 由正方形,可得, 证明,再证明从而可得结论;
    (2)先根据勾股定理求出,从而可得,再根据正方形的性质、勾股定理即可得答案.
    【详解】(1)解:如下图,过O作于H,
    正方形,

    是⊙O的切线,


    为的半径,
    为的半径,
    与相切;
    (2)的半径为,

    由(1)可知, ,


    四边形是正方形,

    则在中,
    ,即,

    解得:,
    故正方形的边长为.
    【点睛】本题考查的是正方形的性质,圆的切线的判定,勾股定理的应用,角平分线的性质,熟练掌握正方形的判定与性质是解题关键.
    相关试卷

    苏科版九年级数学上册压轴题攻略专题07圆压轴题七种模型全攻略(原卷版+解析): 这是一份苏科版九年级数学上册压轴题攻略专题07圆压轴题七种模型全攻略(原卷版+解析),共31页。

    苏科版九年级数学上册压轴题攻略专题12图形的位似压轴题六种模型全攻略特训(原卷版+解析): 这是一份苏科版九年级数学上册压轴题攻略专题12图形的位似压轴题六种模型全攻略特训(原卷版+解析),共40页。试卷主要包含了位似图形相关概念辨析,求位似图形的对应坐标,在坐标系中画位似图形,判断位似中心及求解位似中心,求两个位似图形的相似比等内容,欢迎下载使用。

    苏科版九年级数学上册压轴题攻略专题09平均数、中位数、众数、方差压轴题四种模型全攻略特训(原卷版+解析): 这是一份苏科版九年级数学上册压轴题攻略专题09平均数、中位数、众数、方差压轴题四种模型全攻略特训(原卷版+解析),共34页。试卷主要包含了加权平均数,求方差及做决策等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        苏科版九年级数学上册压轴题攻略专题09类比归纳专题:切线证明的常用方法压轴题二种模型全攻略(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map