|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】
    立即下载
    加入资料篮
    重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】01
    重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】02
    重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】

    展开
    这是一份重庆市育才中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )
    A.林老师家距超市1.5千米
    B.林老师在书店停留了30分钟
    C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
    D.林老师从书店到家的平均速度是10千米/时
    2、(4分)如图,在中,,若的周长为13,则的周长为( )
    A.B.C.D.
    3、(4分)如图,点在反比例函数,的图像上,点在反比例函数的图像上, 轴于点.且,则的值为( )
    A.-3B.-6C.2D.6
    4、(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是( )
    A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
    C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形
    5、(4分)在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点( )
    A.向右平移个单位B.向左平移个单位
    C.向右平移个单位D.向左平移个单位
    6、(4分)如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )
    A.B.C.D.
    7、(4分)在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    则这名运动员成绩的中位数、众数分别是( )
    A.B.C.,D.
    8、(4分)若式子有意义,则实数的取值范围是( )
    A.且B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,则y1_____y2(填“<”或“>”)
    10、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
    11、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
    12、(4分)当 = ______ 时,分式的值为0.
    13、(4分)若式子是二次根式,则x的取值范围是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知如图,在正方形中,为的中点,,平分并交于.求证:
    15、(8分)如图1,直线y=﹣x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.
    (1)求点B的坐标;
    (2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G的坐标;
    (3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
    16、(8分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.
    (1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为 .
    (2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;
    (3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.
    17、(10分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.
    (1)求A,B两点的坐标;
    (2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.
    18、(10分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
    (1)求A、B两种品牌服装每套进价分别为多少元;
    (2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.
    20、(4分)当x___________时,是二次根式.
    21、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
    22、(4分)如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=2,则菱形ABCD的周长是_____。
    23、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) “垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。
    (1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;
    (2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.
    25、(10分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.
    26、(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数:当x≥0时,它们对应的函数值相等,我们把这样的两个函数称作互为友好函数,例如:一次函数y=x-2,它的友好函数为y=
    (1)直接写出一次函数y=-2x+1的友好函数.
    (2)已知点A(2,5)在一次函数y=ax-1的友好函数的图象上,求a的值.
    (3)已知点B(m, )在一次函数y= x-1的友好函数的图象上,求m的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:
    根据图象中的数据信息进行分析判断即可.
    详解:
    A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;
    B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;
    C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;
    D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.
    故选D.
    点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.
    2、D
    【解析】
    求出AB+BC的值,其2倍便是平行四边形的周长.
    【详解】
    解:的周长为13,,

    则平行四边形周长为,
    故选:.
    本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.
    3、B
    【解析】
    先根据反比例函数的比例系数k的几何意义,可知S△AOM,S△BOM=||,则S△AOM:S△BOM=3:|k|,再根据同底的两个三角形面积之比等于高之比,得出S△AOM:S△BOM=AM:MB=1:2,则3:|k|=1:2,然后根据反比例函数的图象所在的象限,即可确定k的值.
    【详解】
    ∵点A在反比例函数y(x>0)的图象上,点B在反比例函数y(x>0)的图象上,AB⊥x轴于点M,∴S△AOM,S△BOM=||,∴S△AOM:S△BOM:||=3:|k|.
    ∵S△AOM:S△BOM=AM:MB=1:2,∴3:|k|=1:2,∴|k|=1.
    ∵反比例函数的图象在第四象限,∴k<0,∴k=﹣1.
    故选B.
    本题考查了反比例函数y的比例系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积,难度中等,得到3:|k|=1:2,是解题的关键.
    4、D
    【解析】
    直接利用特殊平行四边形的判定逐一进行判断即可
    【详解】
    有一组邻边相等的平行四边形是菱形,故A正确
    对角线互相垂直的平行四边形是菱形,故B正确
    有一个角是直角的平行四边形是矩形,故C正确
    对角线垂直且相等的平行四边形是正方形,故D错误
    本题选择不正确的,故选D
    本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键
    5、C
    【解析】
    先求出点A关于y轴的对称点,即可知道平移的规律.
    【详解】
    ∵点关于y轴的对称点为(2,3)
    ∴应把点向右平移个单位,
    故选C.
    此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.
    6、D
    【解析】
    根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,
    由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,
    作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.
    故选D.
    7、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    8、A
    【解析】
    根据分式及二次根式的性质即可求解.
    【详解】
    依题意得x≥0,x-2≠0,故且
    选A.
    此题主要考查分式有意义的条件,解题的关键是熟知二次根式的性质及分母不为零.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、>.
    【解析】
    依据k=﹣8<0,可得此函数在每个象限内,y随x的增大而增大,根据反比例函数的性质可以判断y1与y2的大小关系.
    【详解】
    ∵y=﹣,在二四象限,
    ∴此函数在每个象限内,y随x的增大而增大,
    ∵A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,﹣2>﹣3,
    ∴y1>y2,
    故答案为>.
    题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
    10、-1
    【解析】
    把点的坐标代入两函数得出ab=1,b-a=-1,把化成,代入求出即可,
    【详解】
    解:∵函数与y=x﹣1的图象的交点坐标为(a,b),
    ∴ab=1,b-a=-1,
    ∴==,
    故答案为:−1.
    本题主要考查了反比例函数与一次函数的交点问题,掌握函数图像上点的意义是解题的关键.
    11、
    【解析】
    两人从同一地点同时出发,一人以30m/min的速度向北直行
    【详解】
    解:设10min后,OA=30×10=300(m),
    OB=30×10=300(m),
    甲乙两人相距AB=(m).
    故答案为:.
    本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
    12、-2
    【解析】
    分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.
    【详解】
    分式的值为1,
    即|x|-2=1,x=±2,
    ∵x-2≠1,
    ∴x≠2,
    即x=-2,
    故当x=-2时,分式的值为1.
    故答案为:-2.
    此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
    13、:x≥1
    【解析】
    根据根式的意义,要使根式有意义则必须被开方数大于等于0.
    【详解】
    解:若式子 是二次根式,则x的取值范围是:x≥1.
    故答案为:x≥1.
    本题主要考查根式的取值范围,这是考试的常考点,应当熟练掌握.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.
    【详解】
    解:取DA的中点F,连接FM
    ∵四边形是正方形
    ∴DA=AB,∠A=∠ABC=∠CBE=90°
    ∴∠FDM+∠AMD=90°

    ∴∠BMN+∠AMD=90°
    ∴∠FDM=∠BMN
    ∵点F、M分别是DA、AB的中点
    ∴DF=FA=DA=AB=AM=MB
    ∴△AFM为等腰直角三角形
    ∴∠AFM=45°
    ∴∠DFM=180°-∠AFM=135°
    ∵平分
    ∴∠CBN==45°
    ∴∠MBN=∠ABC+∠CBN=135°
    ∴∠DFM=∠MBN
    在△DFM和△MBN中
    ∴△DFM≌△MBN

    此题考查的是正方形的性质和全等三角形的判定及性质,掌握正方形的性质和构造全等三角形的方法是解决此题的关键.
    15、(1)B(3,0)(2)G(2,2);(3)E(﹣2,0).
    【解析】
    (1)根据题意可先求出点A和点D的坐标,然后根据勾股定理求出AD,设BC=OB=x,则BD=8-x,在直角三角形BCD中根据勾股定理求出x,即可得到点B的坐标;
    (2)由点A和点B的坐标可先求出AB的解析式,然后作GM⊥x轴于M,FN⊥x轴于N,求证△DMG≌△FND,从而得到GM=DN,DM=FN,又因为G、F在直线AB上,进而可求点G的坐标;
    (3)设点Q(a,-a+6),则点P的坐标为(a,-a+6),据此可求出PQ,作QH⊥x轴于H,可以把QH用a表示出来,在直角三角形中,根据勾股定理也可以用a把QH表示出来,从而求出a的值,进而求出点E的坐标.
    【详解】
    解:(1)对于直线y=-x+6,令x=0,得到y=6,可得A(0,6),
    令y=0,得到x=8,可得D(8,0),
    ∴AC=AO=6,OD=8,AD==10,
    ∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,
    在Rt△BCD中,∵BC2+CD2=BD2,
    ∴x2+42=(8﹣x)2,
    ∴x=3,
    ∴B(3,0).
    (2)设直线AB的解析式为y=kx+6,
    ∵B(3,0),
    ∴3k+6=0,
    ∴k=﹣2,
    ∴直线AB的解析式为y=﹣2x+6,
    作GM⊥x轴于M,FN⊥x轴于N,
    ∵△DFG是等腰直角三角形,
    ∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,
    ∴△DMG≌△FND(AAS),
    ∴GM=DN,DM=FN,设GM=DN=m,DM=FN=n,
    ∵G、F在直线AB上,
    ∴ ,
    解得 ,
    ∴G(2,2).
    (3)如图,设Q(a,﹣a+6),
    ∵PQ∥x轴,且点P在直线y=﹣2x+6上,
    ∴P(a,﹣a+6),
    ∴PQ=a,作QH⊥x轴于H,
    ∴DH=a﹣8,QH=a﹣6,
    ∴=,
    由勾股定理可知:QH:DH:DQ=3:4:5,
    ∴QH=DQ=PQ=a,
    ∴a=a﹣6,
    ∴a=16,
    ∴Q(16,﹣6),P(6,﹣6),
    ∵ED∥PQ,ED=PQ,D(8,0),
    ∴E(﹣2,0).
    一次函数解析式的综合运用是本题的考点,此题综合性比较强,用到了勾股定理、全等三角形的判定和性质等知识点,能作出辅助线并熟练运用所学知识是解题的关键.
    16、 (1)456 (2)见解析 (3)42
    【解析】
    (1)设这个“美数”的个位数为x,则根据题意可得方程,解方程求出x的值即可得出答案.
    (2)设四位“美数”的个位为x、两位“美数””的个位为y,分别表示出四位“美数”和两位“美数”,再将四位“美数”减去任意一个两位“美数””之差再加上1的结果除以11判断结果是否为整数即可;
    (3)根据题意两个数之和为55得出二元一次方程,化简方程,再根据x与y的取值范围,即可求出最大值.
    【详解】
    (1)设其个位数为x,则
    解得:x=6
    则这个“美数”为:
    (2)设四位“美数”的个位为x、两位“美数””的个位为y,
    根据题意得:

    =
    =
    即:式子结果是11的倍数
    (3)根据题意:




    由10x+y可得x越大越大,即y为最小值时的值最大
    则x=4,y=2时的值最大
    的最大值为
    本题主要考查二元一次方程的应用,解题关键是设个位数的数为x得出方程并解答.
    17、(1)A(2,0),B(0,1);(2)1.
    【解析】
    试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;
    (2)根据三角形的面积公式列式计算即可得解.
    解:(1)当x=0时,y=﹣3x+1=1,
    当y=0时,0=﹣3x+1,x=2.
    所以A(2,0),B(0,1);
    (2)直线与坐标轴围成的三角形的面积=S△ABO=×2×1=1.
    考点:一次函数图象上点的坐标特征.
    18、(1)A、B两种品牌服装每套进价分别为100元、75元;(2)17套.
    【解析】
    (1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;
    (2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.
    【详解】
    解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,
    解得:,
    经检验:是原分式方程的解,

    答:A、B两种品牌服装每套进价分别为100元、75元;
    (2)设购进A品牌的服装a套,则购进B品牌服装套,由题意得:

    解得:,
    答:至少购进A品牌服装的数量是17套.
    本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.
    【详解】
    如图,过点A1分别作正方形两边的垂线A1D与A1E,
    ∵点A1是正方形的中心,
    ∴A1D=A1E,
    ∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
    ∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
    ∴△A1BD≌△A1CE(ASA),
    ∴△A1BD的面积=△A1CE的面积,
    ∴两个正方形的重合面积=正方形面积=,
    ∴重叠部分的面积和为×2=.
    故答案是:.
    考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.
    20、≤;
    【解析】
    因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.
    【详解】
    因为是二次根式,
    所以,
    所以,
    故答案为.
    本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.
    21、y=x+1.
    【解析】
    直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
    【详解】
    气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
    故答案为:y=x+1.
    此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
    22、
    【解析】
    根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AO=AC=3,DO=BD=1,AC⊥BD,
    在Rt△AOD中,
    ∴菱形ABCD的周长为.
    本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.
    23、45°
    【解析】
    根据正多边形的外角度数等于外角和除以边数可得.
    【详解】
    ∵硬币边缘镌刻的正多边形是正八边形,
    ∴它的外角的度数等于360÷8=45°.
    故答案为45°.
    本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
    二、解答题(本大题共3个小题,共30分)
    24、(1)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨,乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;(2)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨.
    【解析】
    (1)设出甲城市运往垃圾场的垃圾为吨,从而表示出两个城市运往两个垃圾场的垃圾的吨数,再根据路程计算出总运输量,于是就得到一个总运输量与的函数关系式,根据函数的增减性和自变量的取值范围,确定何时总运输量最小,得出运输方案;
    (2)利用运输量不低于2600吨,得出自变量的取值范围,再依据函数的增减性做出判断,制定方案.
    【详解】
    解:(1)甲城市运送不可回收垃圾到垃圾场吨,总运输量为吨.千米
    ,随增大而增大
    当取最小,最小
    由题意可知,解得:
    当时,运输量最小;
    甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;
    乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨
    (2)由①可知:,又,解得:

    此时当时,运输量最小;运输方案最合理
    甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;
    乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨
    本题考查一次函数的应用,一元一次不等式组应用等知识,准确的理解数据之间的关系,设合适的未知数,得到总运输量与自变量的函数关系式是解决问题的关键.
    25、高铁列车平均速度为300km/h.
    【解析】
    设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,利用高铁列车行驶时间比原特快列车行驶时间缩短了3小时,这一等量关系列出方程解题即可
    【详解】
    设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,
    由题意得: +3=,
    解得:x=100,
    经检验:x=100是原方程的解,
    则3×100=300(km/h);
    答:高铁列车平均速度为300km/h.
    本题考查分式方程的简单应用,本题关键在于读懂题意列出方程,特别注意分式方程求解之后需要检验
    26、(1);(2)2;(3)-1或5.
    【解析】
    (1)根据友好函数的定义解答即可;(2)因为-2<0,所以把A(-2,5)代入 中即可求得a的值;(3)分和两种情况求m的值即可.
    【详解】
    (1)的友好函数为,
    (2)解:因为-2<0,所以把A(-2,5)代入 中得,

    ∴;
    (3)当 时,把B(m ,)代入中得,

    ∴;
    当 时,把B(m ,)代入中得,


    本题是阅读理解题,根据题意正确理解友好函数的定义是解决问题的关键.
    题号





    总分
    得分
    批阅人
    成绩(米)
    人数
    相关试卷

    山东省青岛育才中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份山东省青岛育才中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份湖南省2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map