重庆市育才成功学校2025届九上数学开学复习检测模拟试题【含答案】
展开
这是一份重庆市育才成功学校2025届九上数学开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是( )
A.3B.4
C.5D.6
2、(4分)如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为( )
A.30B.20C.D.
3、(4分)以和为根的一元二次方程是( )
A.B.C.D.
4、(4分)如图,反比例函数的图象与菱形ABCD的边AD交于点,则函数图象在菱形ABCD内的部分所对应的x的取值范围是( ).
A.<x<2或-2<x<-B.-4<x<-1
C.-4<x<-1或1<x<4D.<x<2
5、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )
A.4B.6C.8D.10
6、(4分)一个无人超市仓库的货物搬运工作全部由机器人和机器人完成,工作记录显示机器人比机器人每小时多搬运50件货物.机器人搬运2000件货物与机器人搬运1600件货物所用的时间相等,则机器人每小时搬运货物( )
A.250件B.200件C.150件D.100件
7、(4分)用配方法解一元二次方程时,可配方得( )
A.B.
C.D.
8、(4分)下列各图象能表示是的一次函数的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.
10、(4分)若分式的值为0,则x的值是_____.
11、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
12、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
13、(4分)如图,有一块矩形纸片ABCD,AB=8,AD=1.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线过点,且与,轴的正半轴分別交于点、两点,为坐标原点.
(1)当时,求直线的方程;
(2)当点恰好为线段的中点时,求直线的方程.
15、(8分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
16、(8分)小东根据学习一次函数的经验,对函数y=|2x﹣1|的图象和性质进行了探究.下面是小东的探究过程,请补充完成:
(1)函数y=|2x﹣1|的自变量x的取值范围是 ;
(2)已知:
①当x=时,y=|2x﹣1|=0;
②当x>时,y=|2x﹣1|=2x﹣1
③当x<时,y=|2x﹣1|=1﹣2x;
显然,②和③均为某个一次函数的一部分.
(3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m= ;n= ;:
(4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;
(5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.
17、(10分)如图,在中,,,垂足分别为点、,且.
求证:是菱形.
18、(10分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.
(1)将向左平移6个单位长度得到.请画出;
(2)将绕点按逆时针方向旋转得到,请画出.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.
20、(4分)若,则__________.
21、(4分)从长度为2、3、5、7的四条线段中任意选取三条,这三条线段能够构成三角形的概率是_________
22、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.
23、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
25、(10分) (1)解方程:﹣=1
(2)先化简,再求值:÷(﹣x﹣2),其中x=﹣2
26、(12分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
过点D作DH⊥OB于点H,如图,根据角平分线的性质可得DH=DP=4,再根据三角形的面积即可求出结果.
【详解】
解:过点D作DH⊥OB于点H,如图,
∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,
∴DH=DP=4,
∴△ODQ的面积=.
故选:D.
本题主要考查了角平分线的性质,属于基本题型,熟练掌握角平分线的性质定理是解题关键.
2、D
【解析】
由三角形面积公式可求BF的长,由勾股定理可求AF的长,即可求CF的长,由勾股定理可求DE的长,即可求△ADE的面积.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=6cm,BC=AD,
∵,
即:
∴BF=8(cm)
在Rt△ABF中,(cm)
∵折叠后与重合,
∴AD=AF=10cm,DE=EF,
∴BC=10cm,
∴FC=BC-BF=10-8=2(cm),
在Rt△EFC中,,
∴,解之得:,
∴(cm2),
故选:D.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
3、B
【解析】
根据已知两根确定出所求方程即可.
【详解】
以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
4、C
【解析】
根据反比例函数的图象是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,可得BC边与另一条双曲线的交点坐标,即可得答案.
【详解】
∵反比例函数是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,
∴BC边与另一条双曲线的交点坐标为(1,-2),(4,),
∴图象在菱形ABCD内的部分所对应的x的取值范围是-4<x<-1或1<x<4.
故选C.
本题主要考查反比例函数的性质及菱形的性质,反比例函数的图象是以原点为对称中心的中心对称图形;菱形是以对角线的交点为对称中心的中心对称图形;熟练掌握反比例函数及菱形图象的性质是解题关键.
5、C
【解析】
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选C.
6、A
【解析】
首先由题意得出等量关系,即A型机器人搬运10件货物与B型机器人搬运1600件货物所用时间相等,列出分式方程,从而解出方程,最后检验并作答.
【详解】
解:设B型机器人每小时搬运x件货物,则A型机器人每小时搬运(x+50)件货物.
依题意列方程得:
,
解得:x=1.
经检验x=1是原方程的根且符合题意.
当x=1时,x+50=2.
∴A型机器人每小时搬运2件.
故选A.
本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.
7、C
【解析】
根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.
【详解】
移项,得x1-4x=-1
在等号两边加上4,得x1-4x+4=-1+4
∴(x-1)1=1.
故C答案正确.
故选C.
本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.
8、B
【解析】
一次函数的图象是直线.
【详解】
解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.
故选:B.
本题考查了函数的定义,一次函数和正比例函数的图象都是直线.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10m+1
【解析】
对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.
【详解】
解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],
且长:宽=3:2,
∴长为3(m+5),宽为2(m+5),
∴周长为:2[3(m+5)+2(m+5)]=10m+1.
故答案为:10m+1
本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.
10、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
11、45
【解析】
根据三角形中位线定理易证△FPE是等腰三角形,然后根据平行线的性质和三角形外角的性质求出∠FPE =90°即可.
【详解】
解:∵是的中点,、分别是、的中点,
∴EP∥AD,EP=AD,FP∥BC,FP=BC,
∵AD=BC,
∴EP=FP,
∴△FPE是等腰三角形,
∵,
∴∠PEB+∠ABD+∠DBC=90°,
∴∠FPE=∠DPE+∠DPF=∠PEB+∠ABD+∠DBC=90°,
∴,
故答案为:45.
本题考查了三角形中位线定理,等腰三角形的判定和性质,平行线的性质以及三角形外角的性质,根据三角形中位线定理证得△FPE是等腰三角形是解题关键.
12、电影票的售价 电影票的张数,票房收入.
【解析】
根据常量,变量的定义进行填空即可.
【详解】
解:常量是电影票的售价,变量是电影票的张数,票房收入,
故答案为:电影票的售价;电影票的张数,票房收入.
本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
13、2
【解析】
根据折叠的性质,在第二个图中得到DB=8-1=2,∠EAD=45°;在第三个图中,得到AB=AD-DB=1-2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,再由CF=BC-BF即可求得答案.
【详解】
∵AB=8,AD=1,纸片折叠,使得AD边落在AB边上(第二个图),
∴DB=8-1=2,∠EAD=45°,
又∵△AED沿DE向右翻折,AE与BC的交点为F(第三个图),
∴AB=AD-DB=1-2=4,△ABF为等腰直角三角形,
∴BF=AB=4,
∴CF=BC-BF=1-4=2,
故答案为:2.
本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)方程为;的方程为.
【解析】
(1)设,可知,,用待定系数法即可求出方程,得到解析式.
(2)过作轴于点,可得,可以推出PC为的中位线,可得,可得把A(2,0)和坐标代人可得直线的方程.
【详解】
(1)设,则,,设方程为,
把代入方程得,把代入方程得
再把代入得,
方程为.
(2)过作轴于点,则的坐标,
为中点
为的中位线,
为中点,
,
设方程为,把和坐标代人
可得
的方程为.
本题考查了用待定系数法函数解析式,解题的关键是找到函数图像上的点,将点代入得方程组,解方程即可得函数解析式.
15、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
【详解】
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
16、(1)全体实数;(3)3,5;(4)图象见解析;(5)函数y的图象关于x=对称,答案不唯一.
【解析】
(1)函数y=|2x-1|的自变量x的取值范围是全体实数;
(3)取m=3把x=3代入y=|2x-1|计算即可;
(4)根据(3)中的表格描点连线即可;
(5)根据函数的图象,即可求解.
【详解】
解:(1)函数y=|2x-1|的自变量x的取值范围是全体实数;
故答案为全体实数;
(3)m、n的取值不唯一,取m=3,把x=3代入y=|2x-1|,得n=|2×3-1|=5,
即m=3,n=5.
故答案为3,5.
(4)图象如图所示;(要求描点、连线正确)
(5)函数y的图象关于x=对称,答案不唯一,符合函数y的性质均可.
此题考查了一次函数的图象与性质,掌握一次函数的性质是解题的关键.
17、见解析.
【解析】
利用全等三角形的性质证明AB=AD即可解决问题.
【详解】
是平行四边形,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在和中,
∴ABCD是菱形.
本题考查了菱形的判定、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理是解题的关键.
18、(1)图见详解;(1)图见详解.
【解析】
(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.
【详解】
解:(1)如图所示:△A1B1C1,即为所求;
(1)如图所示:△A1B1C1,即为所求.
此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(﹣1,0)
【解析】
根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.
【详解】
解:∵A(4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5
∴AC=5,
∴点C的横坐标为:4-5=-1,纵坐标为:0,
∴点C的坐标为(-1,0).
故答案为(-1,0).
本题考查了勾股定理和坐标与图形性质的应用, 解此题的关键是求出的长, 注意: 在直角三角形中, 两直角边的平方和等于斜边的平方 .
20、
【解析】
利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.
【详解】
解:设a=2k,b=5k
∴
故答案为:.
本题考查了比例的性质,属于基础知识,比较简单.
21、
【解析】
三角形的任意两边的和大于第三边,任意两边之差小于第三遍,本题只要把三边代入,看是否满足即可,把满足的个数除以4即可
【详解】
长度为2、3、5、7的四条线段中任意选取三条共有:2、3、5;2、3、7;3、5、7;2、5、7,共4种情况,能够构成三角形的只有3、5、7这一种,所以概率是
本题结合三角形三边关系与概率计算知识点,掌握好三角形三边关系是解题关键
22、1
【解析】
分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.
详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.
∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.
故答案为1.
点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.
23、1
【解析】
试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=BC=1.
考点:三角形中位线定理.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)(-1,1);(3)2+2;(4)详见解析.
【解析】
(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;
(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C即可;
(3)利用格点三角形分别求出三边的长度,即可求出△ABC的周长;
(4)分别找出A、B、C关于y轴的对称点,顺次连接即可.
【详解】
解:(1)建立平面直角坐标系如图所示;
(2)(-1,1);
(3)AB==2,
BC=AC==,
∴△ABC的周长=2+2;
(4)画出△A'B'C′如图所示.
本题考查了作图,勾股定理,熟练正确应用勾股定理是解题的关键.
25、 (1)x=2;(2);-2.
【解析】
(1)根据分式方程的解法即可求出答案.
(2)根据分式的运算法则即可求出答案.
【详解】
(1)x(x+1)﹣3(x﹣1)=(x﹣1)(x+1)
x2+x﹣3x+3=x2﹣1
x=2
经检验:x=2是原方程的根
(2)当x=﹣2时,
原式=÷
=﹣×
=
=﹣
=﹣2.
本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.
26、;(2)数量关系还成立.证明见解析.
【解析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
【详解】
,理由如下:
是正方形
,且,
≌,
,,
,
,
,
,,
,
且,,
≌,
;
数量关系还成立.
如图,延长CB至E,使,
,,,
≌,
,,
,
即,
且,,
≌,
,≌,
,
.
本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
﹣2
0
1
m
…
y
…
5
1
0
1
n
…
相关试卷
这是一份重庆育才成功学校2024年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市育才成功学校2024年数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市杨家坪中学2025届九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。