2024-2025学年重庆市巴蜀中学数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知AB∥CD,OA:OD=1:4,点M、N分别是OC、OD的中点,则ΔABO与四边形CDNM的面积比为( ).
A.1:4B.1:8C.1:12D.1:16
2、(4分)若△ABC∽△DEF,相似比为4:3,则对应面积的比为( )
A.4:3B.3:4C.16:9D.9:16
3、(4分)在直角三角形中,两条直角边长分别为2和3,则其斜边长为( )
A.B.C.或D.或
4、(4分)在▱ABCD中,∠C=32°,则∠A的度数为( )
A.148°B.128°C.138°D.32°
5、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
( )
A.280B.140C.70D.196
6、(4分)如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程( )
A.B.
C.D.
7、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
8、(4分)如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
10、(4分)分式方程有增根,则m=_____________.
11、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
12、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.
13、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:
(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:
要求:补全表格中相关数值(保留一位小数);
(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.
15、(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点
(1)求证:四边形是菱形
(2)若,求菱形的面积
16、(8分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
17、(10分)某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.
(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.
18、(10分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
(1)求该反比例函数的表达式;
(2)求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③S△APD+S△APB=+;④S正方形ABCD=4+.
其中正确结论的序号是_____.
20、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
21、(4分)如上图,点 A 在双曲线 y=上,且 OA=4,过A作 AC⊥x 轴,垂足为 C,OA 的垂直平分线交OC于B,则△ABC 的周长为_____.
22、(4分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出_____个平行四边形.
23、(4分)一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是 _____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1);
(2).
25、(10分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)
设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:
(1)填空:a= ,b= ,c= .
(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.
(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.
26、(12分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵AB∥CD,OA:OD=1:4,∴ΔABO与ΔDCO的面积比为1:16
又∵点M、N分别是OC、OD的中点,∴ΔOMN与四边形CDNM的面积比为1:3
∴ΔABO与四边形CDNM的面积比为1:12
2、C
【解析】
直接利用相似三角形的性质求解.
【详解】
解:∵,相似比为
∴它们的面积的比为
故选:C
本题考查了相似三角形的性质---相似三角形面积之比等于相似比的平方,属基础题,准确利用性质进行计算即可.
3、B
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,其斜边长=,
故选B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
4、D
【解析】
根据平行四边形的性质:对角相等即可求出的度数.
【详解】
四边形是平行四边形,
,
,
.
故选:.
本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.
5、C
【解析】
解:设小长方形的长、宽分别为x、y,
依题意得:,
解得:,
则矩形ABCD的面积为7×2×5=1.
故选C.
【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
6、B
【解析】
设,则,根据矩形面积公式列出方程.
【详解】
解:设,则,
由题意,得.
故选:.
考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
7、A
【解析】
试题解析:A, 可以得出:
故选A.
8、D
【解析】
根据三角形中位线定理解答.
【详解】
解:∵点M,N分别是AC,BC的中点,
∴AB=2MN=13(m),
故选:C.
本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据一次函数判断出函数图象的增减性,再根据x1<x1进行判断即可.
【详解】
∵直线,k=-<0,
∴y随x的增大而减小,
又∵x1<x1,
∴y1>y1.
故答案为>.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
10、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
11、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
12、1
【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.
【详解】
解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,
∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.
本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.
13、乙.
【解析】
根据方差反应了数据的波动情况,即可完成作答。
【详解】
解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
三、解答题(本大题共5个小题,共48分)
14、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1
【解析】
(1)根据点P在第5秒与第9秒的位置,分别求出BP的长,即可得到答案;
(2)根据表格中的x,y的对应值,描点、连线,画出函数图象,即可;
(3)令CP=y′,确定P在BC和AC上时,得y′=-x+5 或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.
【详解】
(1)当x=5时,点P与点C重合,y=5,
当x=9时,点P在AC边上,且CP=9×1-5=4cm,
过点B作BD⊥AC于点D,则CD=AC=3cm,BD=cm,
∴DP=CP-CD=4-3=1cm,BP=cm,即:y=4.1.
如下表:
故答案为:5.0;4.1;
(2)描点、连线,画出函数图象如下:
(3)令CP=y′,
当0≤x≤5时, y′=-x+5;
当5<x≤11时,y′=x-5,
画出图象可得:当x=2.5或9.1时,BP=PC.
故答案为:2.5或9.1.
本题主要考查动点问题的函数图象,理解图表的信息,掌握描点、连线,画出函数图象,理解当BP=CP时,x的值是函数图象的交点的横坐标,是解题的关键.
15、(1)见解析(2)10
【解析】
(1)先证明,得到,,再证明四边形是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到,即可证明四边形是菱形。
(2)连接,证明四边形是平行四边形,得到,利用菱形的求面积公式即可求解。
【详解】
(1)证明: ∵,∴,
∵是的中点,是边上的中线,∴,
在和中,
,
∴,∴.
∵,∴.
∵,∴四边形是平行四边形,
∵,是的中点,是的中点,
∴,∴四边形是菱形;
(2)如图,连接,
∵,
∴四边形是平行四边形,∴,
∵四边形是菱形,∴.
本题主要考查全等三角形的应用,菱形的判定定理以及菱形的性质,熟练掌握菱形的的判定定理和性质是解此题的关键。
16、;(2)数量关系还成立.证明见解析.
【解析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
【详解】
,理由如下:
是正方形
,且,
≌,
,,
,
,
,
,,
,
且,,
≌,
;
数量关系还成立.
如图,延长CB至E,使,
,,,
≌,
,,
,
即,
且,,
≌,
,≌,
,
.
本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
17、(3)y=3.33x+6;y=3.33x(3)当333≤x<333时,选择乙种印刷方式较合算;当x=333时,选择甲、乙两种印刷方式都可以;当333
(3)设甲种收费的函数关系式y3=kx+b,乙种收费的函数关系式是y3=k3x,直接运用待定系数法就可以求出结论;
(3)由(3)的解析式分三种情况进行讨论,当y3>y3时,当y3=y3时,当y3<y3时分别求出x的取值范围就可以得出选择方式.
【详解】
(3)设甲种收费的函数关系式y3=kx+b,乙种收费的函数关系式是y3=k3x,由题意,得
,33=333k3,
解得:,k3=3.33,
∴y3=3.3x+6(x≥3),y3=3.33x(x≥3);
(3)由题意,得
当y3>y3时,3.3x+6>3.33x,得x<333;
当y3=y3时,3.3x+6=3.33x,得x=333;
当y3<y3时,3.3x+6<3.33x,得x>333;
∴当333≤x<333时,选择乙种方式合算;
当x=333时,甲、乙两种方式一样合算;
当333<x≤453时,选择甲种方式合算.
答:印制333~333(含333)份学案,选择乙种印刷方式较合算,印制333份学案,甲、乙两种印刷方式都一样合算,印制333~453(含453)份学案,选择甲种印刷方式较合算.
3.待定系数法求一次函数解析式;3.一次函数的应用.
18、(1);(2).
【解析】
(1)根据,求出C点坐标,再根据为的中点,得到D点坐标,再用待定系数法即可求解函数解析式;
(2)先求出E点坐标,利用割补法即可求出的面积.
【详解】
解:(1)∵,,
∴.
∵为的中点,
∴.代入可得,
∴.
(2)将代入得,
∴.
∴矩形.
此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①③④
【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
【详解】
解:∵正方形ABCD
∴AB=AD,∠BAD=90°
又∵∠EAP=90°
∴∠BAE=∠PAD,AE=AP,AB=AD
∴△AEB≌△APD故①正确
作BM⊥AE于M,
∵AE=AP=1,∠EAP=90°
∴EP=,∠APE=45°=∠AEP
∴∠APD=135°
∵△AEP≌△APD,
∴∠AEB=135°
∴∠BEP=90°
∴BE
∵∠M=90°,∠BEM=45°
∴∠BEM=∠EBM=45°
∴BE=MB 且BE=,
∴BM=ME=,故②错误
∵S△APD+S△APB=S四边形AMBP﹣S△BEM
故③正确
∵S正方形ABCD=AB2=AE2+BE2
∴S正方形ABCD 故④正确
∴正确的有①③④
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
20、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
21、2
【解析】
根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组 ,解之即可求出△ABC的周长.
【详解】
解:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则:,
解得a+b=2,
即△ABC的周长=OC+AC=2cm.
故答案为:2cm.
本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.
22、1
【解析】
根据全等三角形的性质及平行四边形的判定,可找出现1个平行四边形.
【详解】
解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出1个平行四边形.
故答案为1.
此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.
23、4
【解析】
【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.
【详解】令y=0,则x=2;令x=0,则y=4,
∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).
∴S=.
故正确答案为4.
【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2) 3.
【解析】
根据二次根式的运算法则依次计算即可
【详解】
(1)解:原式=-=
(2)解:原式=+=3
熟练掌握二次根式的计算是解决本题的关键,难度不大
25、(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(,9);其意义为当 x<时是方案调价前合算,当x>时方案调价后合算.
【解析】
(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;
(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;
(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.
【详解】
①由图可知,a=7元,
b=(11.2﹣7)÷(6﹣3)=1.4元,
c=(13.3﹣11.2)÷(7﹣6)=2.1元,
故答案为7,1.4,2.1;
②由图得,当x>3时,y1与x的关系式是:
y1=6+(x﹣3)×2.1,
整理得,y1=2.1x﹣0.3,
函数图象如图所示:
③由图得,当3<x<6时,y2与x的关系式是:
y2=7+(x﹣3)×1.4,
整理得,y2=1.4x+2.8;
所以,当y1=y2时,交点存在,
即,2.1x﹣0.3=1.4x+2.8,
解得,x=,y=9;
所以,函数y1与y2的图象存在交点(,9);
其意义为当 x<时是方案调价前合算,当 x>时方案调价后合算.
本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.
26、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析
【解析】
(1) 取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;
(2) 在AB上截取BN=BE,类比(1)的证明方法即可得出结果;
(3) 在BA延长线上取一点Q,使BQ=BE,连接EQ, 类比(1)的证明方法即可得出结果.
【详解】
(1)余下证明过程为:
∵∠ABE=90°
∴∠BAE+∠AEB=90°
∵∠AEF=90°
∴∠BAE=∠CEF
∴ΔAPE≌ΔECF
∴AE=EF.
(2)成立
证明:在AB上截取BN=BE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴ΔBNE为等腰三角形,AN=EC
∴∠BNE=45°
∴∠ANE=135°
又因为GH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠ANE=∠ECF
由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°
∴∠BAE=∠CEF
∴ΔANE≌ΔECF
∴AE=EF
(3)如图
证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,
在正方形ABCD中,
∵AB=BC,
∴AQ=CE.
∵∠B=90°,
∴∠Q=45°.
∵CH平分∠DCN,∠DCN=∠DCB=90°,
∴∠HCE=∠Q=45°.
∵AD∥BE,
∴∠DAE=∠AEB.
∵∠AEF=∠QAD=90°,
∴∠QAE=∠CEF.
∴△QAE≌△CEF.
∴AE=EF.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.
题号
一
二
三
四
五
总分
得分
x
0
1
2
3
4
5
6
7
8
9
10
11
y
0.0
1.0
2.0
3.0
4.0
4.5
4.1
4
4.5
5.0
行驶路程
收费标准
调价前
调价后
不超过3km的部分
起步价6元
起步价a 元
超过3km不超出6km的部分
每公里2.1元
每公里b元
超出6km的部分
每公里c元
x
0
1
2
3
4
5
6
7
8
9
10
11
y
0.0
1.0
2.0
3.0
4.0
5.0
4.5
4.1
4.0
4.1
4.5
5.0
2024-2025学年铜川市重点中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年铜川市重点中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省张家港市梁丰初级中学数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2024-2025学年江苏省张家港市梁丰初级中学数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省扬州中学数学九年级第一学期开学复习检测试题【含答案】: 这是一份2024-2025学年江苏省扬州中学数学九年级第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。