浙江省绍兴市诸暨市暨阳初级中学2025届九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,周长是△ABC的一半.AB=8cm,则AB边上高等于 ( )
A.3 cm B.6 cm C.9cm D.12cm
2、(4分)如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是( )
A.四边形是平行四边形
B.如果,那么四边形是矩形.
C.如果平分,那么四边形是正方形.
D.如果且,那么四边形是菱形.
3、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
A.452名学生B.抽取的50名学生
C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
4、(4分)若把分式的x、y同时扩大3倍,则分式值( )
A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
5、(4分)下列运算错误的是
A.B.
C.D.
6、(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为的菱形,剪口与折痕所成的角的度数为()
A.B.
C.D.
7、(4分)如图,直线y=-x+2与x轴交于点A,则点A的坐标是( )
A.(2,0)B.(0,2)C.(1,1)D.(2,2)
8、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知反比例函数,当时,y的取值范围是________.
10、(4分)计算:=_____;|﹣|=_____.
11、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.
12、(4分)根据图中的程序,当输入时,输出的结果______.
13、(4分)如图,已知,,,,若线段可由线段围绕旋转中心旋转而得,则旋转中心的坐标是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.
(1)求证:四边形DFCE是菱形;
(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.
15、(8分) “中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点”正前方60米处,过了3秒后,测得小汽车位置与“车速检测点”之间的距离为100米,这辆小汽车是按规定行驶吗?
16、(8分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?
17、(10分)为积极响应新旧功能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为35万元时,年销售量为550台;每台售价为40万元时,年销售量为500台.假定该设备的年销售量(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于60万元,如果该公司想获得8000万元的年利润,则该设备的销售单价应是多少万元?
18、(10分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,请判断△ABC的形状;
(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值是0,则x的值为________.
20、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.
21、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
22、(4分)如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n
二、解答题(本大题共3个小题,共30分)
24、(8分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2
(知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.
(拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为 (请直接写出结果)
25、(10分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.
(1)求点的坐标;
(2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;
(3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.
26、(12分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.
(1)写出点、、的坐标,并在右图中画出;
(2)求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:由题意得,
∵△ABC∽△A′B′C′,△A′B′C′的周长是△ABC的一半
∴位似比为2
∴S△ABC=4S△A′B′C=24cm2,
∴AB边上的高等于6cm.
故选B.
2、C
【解析】
根据特殊的平行四边形的判定定理来作答.
【详解】
解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;
又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;
如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,
∴∠FAD=∠ADF,
∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;
如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.
故选:C.
本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.
3、D
【解析】
根据样本是总体中所抽取的一部分个体,可得答案.
【详解】
解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.
故选:D.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、B
【解析】
将,扩大3倍,即将,用,代替,就可以解出此题.
【详解】
解:,
分式值扩大3倍.
故选:B.
此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.
5、A
【解析】
根据二次根式的加减法、乘法、除法逐项进行计算即可得.
【详解】
A. 与不是同类二次根式,不能合并,故错误,符合题意;
B. ,正确,不符合题意;
C. = ,正确,不符合题意;
D. ,正确,不符合题意.
故选A.
本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.
6、C
【解析】
折痕为AC与BD,∠BAD=100°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=40°,易得∠BAC=50°,所以剪口与折痕所成的角a的度数应为40°或50°.
【详解】
∵四边形ABCD是菱形,
∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAD=100°,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠ABD=40°,∠BAC=50°.
∴剪口与折痕所成的角a的度数应为40°或50°.
故选:C.
此题考查菱形的判定,折叠问题,解题关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.
7、A
【解析】
一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.
【详解】
解:直线中,令.则.
解得.
∴.
故选:A.
本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).
8、C
【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解
【详解】
解:设矩形宽为xm,则矩形的长为(30﹣3x)m,
根据题意得:x(30﹣3x)=1.
故选:C.
本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
【详解】
∵k=1>0,
∴在每个象限内y随x的增大而减小,
又∵当x=1时,y=1,
当x=2时,y=5,
∴当1<x<2时,5<y<1.
故答案为.
本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
10、
【解析】
根据二次根式的分母有理化和二次根式的性质分别计算可得.
【详解】
=,|-|==2,
故答案为:,2.
本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.
11、
【解析】
在Rt△ACB中,,,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.
【详解】
∵,
∴∠ACB=90°,
在Rt△ACB中,,,
由勾股定理可得,AC=8,
∴平行四边形ABCD的面积为:BC×AC=6×8=48.
故答案为:48.
本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.
12、2
【解析】
根据题意可知,该程序计算是将x代入y=−2x+1.将x=5输入即可求解.
【详解】
∵x=5>3,
∴将x=5代入y=−2x+1,
解得y=2.
故答案为:2.
解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.
13、或
【解析】
根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
【详解】
解:如图:
连接AC,BD,作他们的垂直平分线交于点P,其坐标为(1,-1)
同理,另一旋转中心为(1,1)
故答案为或
本题主要考查了旋转中心的确定,即出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)1+
【解析】
试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.
试题解析:
(1)证明:∵EF是DC的垂直平分线,
∴DE=EC,DF=CF,∠EGC=∠FGC=90°,
∵CD平分∠ACB,
∴∠ECG=∠FCG,
∵CG=CG,
∴△CGE≌△FCG(ASA),
∴GE=GF,
∴DE=EC=DF=CF,
∴四边形DFCE是菱形;
(2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,
∵∠ABC=60°,
∴∠BDH=30°,
∴BH=BD=1,
在Rt△DHB中,DH==,
∵四边形DFCE是菱形,
∴DF∥AC,
∴∠DFB=∠ACB=45°,
∴△DHF是等腰直角三角形,
∴DH=FH=,
∴BF=BH+FH=1+.
15、这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈
【解析】
根据勾股定理求出BC,求出速度,再比较即可.
【详解】
解:由勾股定理得,(米),
(米/秒),
∵米/秒千米/时,而,
∴这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈
本题考查了勾股定理的应用,能求出BC的长是解此题的关键.
16、12m
【解析】
根据题意得出在Rt△ABC中,BC=即可求得.
【详解】
如图所示:
由题意可得,AB=5m,AC=13m,
在Rt△ABC中,BC==12(m),
答:这条缆绳在地面的固定点距离电线杆底部12m.
要考查了勾股定理的应用,根据题意得出△ABC是直角三角形是解题关键,再运用勾股定理求得BC的值.
17、(1)年销售量与销售单价的函数关系式为;(2)该设备的销售单价应是50万元/台.
【解析】
(1)设年销售量与销售单价的函数关系式为,根据待定系数法确定函数关系式即可求解;
(2)设此设备的销售单价为万元/台,每台设备的利润为万元,销售数量为台,根据题意列车一元二次方程即可求解.
【详解】
(1)设年销售量与销售单价的函数关系式为,
将、代入,得:
,…
解得:,
∴年销售量与销售单价的函数关系式为;
(2)设此设备的销售单价为万元/台,
则每台设备的利润为万元,销售数量为台,
根据题意得:,
整理,得:,解得:,,
∵此设备的销售单价不得高于60万元,∴.
答:该设备的销售单价应是50万元/台.
此题主要考查一次函数与一元二次方程的应用,解题的关键是根据题意得到等量关系进行列方程求解.
18、 (1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
【解析】
(1)利用待定系数法,即可得到直线AD的解析式;
(2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;
(3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.
【详解】
解:(1)直线AD的解析式为y=kx+b,
∵直线AD经过点A(1,2),点D(0,1),
∴,
解得,
∴直线AD的解析式为y=x+1;
(2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,
∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),
∵点A(1,2),
∴AB=2,AC=2,BC=4,
∵AB2+AC2=16=BC2,
∴∠BAC=90°,
∴△ABC是等腰直角三角形;
(3)存在,
AC=2,S△BOD=×1×1=,
∵△ABC是等腰直角三角形,
∴∠CAE=90°,
∵S△ACE=AE×AC,4S△BOD=S△ACE,
∴4×=×AE×2,
解得AE=,
①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,
∵AD=AE=,∠EDF=45°,
∴EF=DF=2,OF=2+1=3,
∴E(2,3);
②当点E在直线AC的左侧时,
∵AD=AE=,
∴点E与点D重合,即E(0,1),
综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据分式为0的条件解答即可,
【详解】
因为分式的值为0,
所以∣x∣-3=0且3+x≠0,
∣x∣-3=0,即x=3,
3+x≠0,即x≠-3,
所以x=3,
故答案为:3
本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.
20、3或
【解析】
分两种情况讨论即可:①BA=BD,②DA=DB.
【详解】
解:①如图:
当AD成为等腰△BAD的底时,BA=BD,∵∠BAC=90°,∠B=30°,AC=3,∴BC=2x3=6,AB=3,∴BD=BA=3;
②如图:
当AB成为等腰△DAB的底边时,DA=DB, 点D在AB的中垂线与斜边BC的交点处,
∴∠DAB=∠B=30°,∴∠ADC=∠B+∠DAB=60°, ∵∠C=90°-∠B=60°, ∴△ADC为等边三角形,∴BD=AD=3,
故答案为3或3.
本题考查了等腰三角形的性质及线段垂直平分线的性质,关键是灵活运用这些性质.
21、50°或90°
【解析】
分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为50°或90°.
点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
22、>1
【解析】
∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),
∴关于x的不等式mx+n<x+n-2的解集为x>1,
故答案为x>1.
23、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:
【解析】
几何背景:由 Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.
知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.
拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.
【详解】
解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1
Rt△ACD中,AD1=AC1﹣CD1,
∴AB1﹣BD1=AC1﹣CD1,
∴AB1﹣AC1=BD1﹣CD1.
知识迁移:BP1﹣PC1 =BF1﹣CF1.
如 图:
过P点作PE⊥AD,延长EP交BC于F
∴四边形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA1﹣PD1=AE1﹣DE1.
∵PF是△PBC的高
∴BP1﹣PC1 =BF1﹣CF1.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四边形ABFE,四边形DCFE是矩形
∴AE=BF,CF=DE
∴PA1﹣PD1=BP1﹣PC1.
拓展应用:∵PA1﹣PD1=BP1﹣PC1.
∴PA1﹣PB1=c1.
∴PD1﹣PC1=c1.
且PD1+PC1=c1.
∴PD=c,PC=c
∴,
故答案为.
本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
25、(1);(2)或;(3),理由见解析。
【解析】
(1)联立两函数即可求出C点坐标;
(2)根据题意写出M,D,E的坐标,再根据即可列式求解;
(3)过作,交的延长线于,设交于点,得到得为等腰直角三角形,再证明,故可得,即可求解.
【详解】
(1)联立,解得
∴
(2)
依题意得
解得或
(3),理由如下:
过作,交的延长线于,设交于点
易得为等腰直角三角形,
易得
此题主要考查一次函数的应用,解题的关键是根据题意作出辅助线、熟知一次函数的图像及全等三角形的判定与性质.
26、(1)、、,作图见解析;(2)6
【解析】
(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用三角形面积公式计算.
【详解】
解:(1)如图,△A1B1C1为所作,
∴、、;
(2);
本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.
题号
一
二
三
四
五
总分
得分
浙江省绍兴市诸暨市2024年数学九上开学调研模拟试题【含答案】: 这是一份浙江省绍兴市诸暨市2024年数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省绍兴市暨阳2024年九年级数学第一学期开学考试试题【含答案】: 这是一份浙江省绍兴市暨阳2024年九年级数学第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。