浙江省绍兴市诸暨市2024年数学九上开学调研模拟试题【含答案】
展开
这是一份浙江省绍兴市诸暨市2024年数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A.B.C.D.
2、(4分)下列因式分解正确的是( )
A.B.
C.D.
3、(4分)下列图形中,可以抽象为中心对称图形的是( )
A.B.
C.D.
4、(4分)若分式有意义,则的取值范围是( )
A.B.C.D.
5、(4分)下列根式中是最简二次根式的是
A.B.C.D.
6、(4分)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )
A.众数是6B.极差是2C.平均数是6D.方差是4
7、(4分)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是( )
A.①②都对B.①②都错
C.①对②错D.①错②对
8、(4分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.C.13,14,15D.6,8,10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为______度.
10、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
11、(4分)直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.
12、(4分)如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.
13、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)某市建设全长540米的绿化带,有甲、乙两个工程队参加.甲队平均每天绿化的长度是乙队的1.5倍.若由一个工程队单独完成绿化,乙队比甲队对多用6天,分别求出甲、乙两队平均每天绿化的长度。
15、(8分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在的前提下,求EF的最小值和此时的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
16、(8分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.
17、(10分)先分解因式,再求值:,其中,.
18、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
20、(4分)若解分式方程产生增根,则m=_____.
21、(4分)已知函数y=2x2-3x+l,当y=1时,x=_____.
22、(4分)关于的方程有实数根,则的取值范围是_________.
23、(4分)如图,对面积为S的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;··· ;则______.按此规律继续下去,可得到,则其面积_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
25、(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
26、(12分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式;
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
故选D.
本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、C
【解析】
根据因式分解的定义及方法逐项分析即可.
【详解】
A. ,故不正确;
B. 在实数范围内不能因式分解,故不正确;
C. ,正确;
D. 的右边不是积的形式,故不正确;
故选C.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
3、B
【解析】
根据中心对称图形的概念求解.
【详解】
A. 不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
B. 是中心对称图形,故此选项正确;
C. 不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
D. 不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误。
故选:B.
此题考查中心对称图形,难度不大.
4、A
【解析】
根据分式有意义的条件,得到关于x的不等式,进而即可求解.
【详解】
∵分式有意义,
∴,即:,
故选A.
本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键.
5、B
【解析】
A.=,故此选项错误;
B.是最简二次根式,故此选项正确;
C.=3,故此选项错误;
D.=,故此选项错误;
故选B.
考点:最简二次根式.
6、D
【解析】
众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.
【详解】
解:这组数据6出现了6次,最多,所以这组数据的众数为6;
这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;
这组数据的平均数=(5×2+6×6+7×2)=6;
这组数据的方差S2= [2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;
所以四个选项中,A、B、C正确,D错误.
故选:D.
本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.
7、A
【解析】
根据题意得到四边形AMND为菱形,故可判断.
【详解】
解:∵四边形ABCD平行四边形,
∴∠B=∠D=∠AMN,
∴MN∥BC,
∵AM=DA,
∴四边形AMND为菱形,
∴MN=AM.
故①②正确.
故选A.
8、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
【详解】
解:A、,不能构成直角三角形,故不符合题意;
B、,不能构成直角三角形,故不符合题意;
C、,不能构成直角三角形,故不符合题意;
D、,能构成直角三角形,故符合题意.
故选:D.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据邻补角的和是180°,结合已知条件可求∠COE的度数.
【详解】
∵∠1=55°,
∴∠COE=180°-55°=1°.
故答案为1.
此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.
10、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
11、6.5
【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
【详解】
解:如图,在△ABC中,∠C=90°,AC=11,BC=5,
根据勾股定理知,
∵CD为斜边AB上的中线,
故答案为:6.5
本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
12、
【解析】
过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.
【详解】
解:如图,过点F作FH⊥AD于H,
∵四边形ABCD为矩形,
∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,
∴∠BFE=∠DEF,
由折叠可知,∠BFE=∠DFE,BF=DF,
∴∠DEF=∠DFE,
∴DE=DF=BF,
在Rt△DCF中
设DF=x,则CF=BC-BF=6-x,
∵DC2+CF2=DF2,
∴42+(6-x)2=x2,
解得,x=,
∴DE=DF=BF=,
∴CF=BC-BF=6-=,
∵四边形DCFH为矩形,
∴HF=CD=4,DH=CF=,
∴HE=DE-DH=,
∴在Rt△HFE中,
故答案为
本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.
13、1.
【解析】
根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.
【详解】
解:数据1出现了3次,次数最多,所以这组数据的众数是1.
故答案为:1.
众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、甲队平均每天绿化45米,乙队平均每天绿化30米
【解析】
设乙队平均每天绿化x米, 由时间=工作量÷工作效率,结合乙队比甲队多用6天列分式方程,解出x, 再代入方程检验即可求出x, 则乙队平均每天绿化多少米也可求.
【详解】
设乙队平均每天绿化x米,则甲队平均每天绿化1.5x米,
依题意得
解得x=30
经检验x=30是原方程的根且符合题意,
∴1.5x=45(米),
答:甲队平均每天绿化45米,乙队平均每天绿化30米。
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
15、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
【解析】
先证明和是等边三角形,再证明≌,可得结论;
由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
【详解】
,
证明:、F的速度相同,且同时运动,
,
又四边形ABCD是菱形,
,
,
,
是等边三角形,
同理也是等边三角形,
,
在和中,
,
≌,
;
由得:≌,
,
,
,
是等边三角形,
,
如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
,,
,
的最小值是,
中,,,
,
,
;
如图3,当点E运动到DC边上时,大小不发生变化,
在和中,
,
≌,
,
,
,
,
,
,
、B、M、D四点共圆,
.
此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.
16、.
【解析】
试题分析:因为CD⊥AB,所以△ACD和△BCD都是直角三角形,都利用勾股定理表示CD的长,得到方程即可求解.
试题解析:根据题意CD2=AC2-AD2=32-(2BD)2=9-4BD2,
CD2=BC2-BD2=22-BD2=4-BD2,
∴9-4BD2=4-BD2,
解得BD2=,
∴BD=.
考点:勾股定理.
17、,1
【解析】
先提取公因式,再利用完全平方公式进行因式分解,将,代入求解即可.
【详解】
解:
=
=
∵其中,
∴原式
=1.
本题考查了因式分解的问题,掌握完全平方公式是解题的关键.
18、(1)k=-1,b=4;(2)点D的坐标为(0,-4).
【解析】
分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;
(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.
详解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:,
解得:.
(2)当y=0时,有﹣x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD=S△BOC,即﹣m=××4×3,
解得:m=-4,
∴点D的坐标为(0,-4).
点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.
【详解】
解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,
直线AC的解析式为,
当时,,当时,,
点A的坐标为,点C的坐标为,
点D的坐标为,点B的坐标为,
点的坐标为,
设过点B和点的直线解析式为,
,
解得,,
过点B和点的直线解析式为,
当时,,
即点P的坐标为,
.
故答案为.
本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
20、-5
【解析】
试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
故答案为-5.
21、0或
【解析】
把y=1时代入解析式,即可求解.
【详解】
解:当y=1时,则1=2x2-3x+1,
解得:x=0或x=,
故答案为0或.
本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.
22、k≤2
【解析】
当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
【详解】
当k-1=0,即k=1时,方程为2x+1=0,
解得x=-,符合题意;
②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
解得:k≤2且k≠1.
综上即可得出k的取值范围为k≤2.
故答案为k≤2.
本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
23、19S
【解析】
首先根据题意,求得,同理求得,则可求得面积的值;根据题意发现规律:即可求得答案.
【详解】
连,
∵,
∴,
同理:,
∴,
同理:,
∴,
即,
同理:S,S,
∴.
故答案是:19S,.
本题主要考查了三角形面积及等积变换,利用三角形同高则面积比与底边关系分别分析得出规律:是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)18cm(2)当t=秒时四边形PQCD为平行四边形(3)当t=时,四边形PQCD为等腰梯形(4)存在t,t的值为秒或4秒或秒
【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;
(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;
(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;
(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.
(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,
DE=AB=8cm,AD=BE=12cm,
在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,
∴EC==6cm,
∴BC=BE+EC=18cm.
(2)∵AD∥BC,即PD∥CQ,
∴当PD=CQ时,四边形PQCD为平行四边形,
即12-2t=3t,
解得t=秒,
故当t=秒时四边形PQCD为平行四边形;
(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,
当PQ=CD时,四边形PQCD为等腰梯形.
过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.
在Rt△PQF和Rt△CDE中,
,
∴Rt△PQF≌Rt△CDE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即3t-(12-2t)=12,
解得:t=,
即当t=时,四边形PQCD为等腰梯形;
(4)△DQC是等腰三角形时,分三种情况讨论:
①当QC=DC时,即3t=10,
∴t=;
②当DQ=DC时,
∴t=4;
③当QD=QC时,3t×
∴t=.
故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.
考点:四边形综合题.
25、该商品每个定价为1元,进货100个.
【解析】
利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.
解:设每个商品的定价是x元,
由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,
整理,得x2﹣110x+3000=0,
解得x1=50,x2=1.
当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;
当x=1时,进货180﹣10(1﹣52)=100个<180个,符合题意.
答:当该商品每个定价为1元时,进货100个.
26、(1)y=;
(2)Q1(,4);Q2(4,),Q3(4,);
(3)s1=8t(0<t≤1);s2=﹣2t2+2t+8(1≤t≤2);s3=﹣10t+1(2≤t≤).
【解析】
试题分析:(1)根据正方形ABCD的边长为4,可得C的坐标为(4,4),再用待定系数法求出反比例函数解析式;
(2)分点Q在CD,BC,AB边上,根据全等三角形的判定和性质求得点Q的坐标;
(3)分点Q在CD,BC,AB边上,由三角形面积公式和组合图形的面积计算即可求解.
试题解析:解:(1)∵正方形ABCD的边长为4,
∴C的坐标为(4,4),
设反比例解析式为y=,
将C的坐标代入解析式得:k=16,则反比例解析式为y=;
(2)当Q在DC上时,如图所示:
此时△APD≌△CQB,
∴AP=CQ,即t=4﹣4t,解得t=,
则DQ=4t=,即Q1(,4);
当Q在BC边上时,有两个位置,如图所示:
若Q在上边,则△QCD≌△PAD,
∴AP=QC,即4t﹣4=t,解得t=,
则QB=8﹣4t=,此时Q2(4,);
若Q在下边,则△APD≌△BQA,
则AP=BQ,即8﹣4t=t,解得t=,
则QB=,即Q3(4,);
当Q在AB边上时,如图所示:
此时△APD≌△QBC,
∴AP=BQ,即4t﹣8=t,解得t=,
因为0≤t≤,所以舍去.
综上所述Q1(,4); Q2(4,),Q3(4,);
(3)当0<t≤1时,Q在DC上,DQ=4t,则s=×4t×4=8t;
当1≤t≤2时,Q在BC上,则BP=4﹣t,CQ=4t﹣4,AP=t,
则s=S正方形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=16﹣AP•AD﹣PB•BQ﹣DC•CQ=16﹣t×4﹣(4﹣t)•[4﹣(4t﹣4)]﹣×4(4t﹣4)═﹣2t2+2t+8;
当2≤t≤时,Q在AB上,PQ=12﹣5t,则s=×4×(12﹣5t),即s=﹣10t+1.
总之,s1=8t(0<t≤1);
s2=﹣2t2+2t+8(1≤t≤2);
s3=﹣10t+1(2≤t≤).
考点:反比例函数综合题.
题号
一
二
三
四
五
总分
得分
批阅人
温度/℃
22
24
26
29
天数
2
1
3
1
相关试卷
这是一份浙江省绍兴市诸暨市暨阳初级中学2025届九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省绍兴市上虞实验中学数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。