|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】01
    浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】02
    浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】

    展开
    这是一份浙江省绍兴柯桥区七校联考2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≤0的解为( )
    A.x≤0 B.x≥0 C.x≥2 D.x≤2
    2、(4分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
    A.(,0)B.(2,0)C.(,0)D.(3,0)
    3、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )
    A.△ABE≌△ACFB.点D在∠BAC的平分线上
    C.△BDF≌△CDED.D是BE的中点
    4、(4分)下列式子是分式的是( )
    A.B.C.D.
    5、(4分)在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是( )
    A.测量对角线是否平分B.测量两组对边是否分别相等
    C.测量其中三个角是否是直角D.测量对角线是否相等
    6、(4分)下列计算或化简正确的是( )
    A.B.
    C.D.
    7、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为( )
    A.4B.C.D.28
    8、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
    A.小于米B.大于米C.等于米D.无法确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=_____cm.
    10、(4分)某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________ m.
    11、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
    12、(4分)与最简二次根式是同类二次根式,则__________.
    13、(4分)平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,点E在AB上且AE:EB=1:2,点F是BC中点,过D作DP⊥AF于点P,DQ⊥CE于点Q,则DP:DQ=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
    15、(8分)已知关于的方程
    (1)若请分别用以下方法解这个方程:
    ①配方法;
    ②公式法;
    (2)若方程有两个实数根,求的取值范围.
    16、(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
    (1)求证:四边形AMDN是平行四边形;
    (2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
    17、(10分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.
    (1)求去年购买的文学书和科普书的单价各是多少元;
    (2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?
    18、(10分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.
    (1)求证:四边形ADFC是平行四边形;
    (2)若∠BDC=90°,求证:CD平分∠ACB;
    (3)在(2)的条件下,若BD=DC=6,求AB的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.
    20、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
    21、(4分)若关于的一元二次方程有实数根,则的取值范围为______.
    22、(4分)菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为 cm.。
    23、(4分)如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.
    25、(10分)问题背景
    如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
    类比探究
    如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
    (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
    (2)△DEF是否为正三角形?请说明理由.
    (3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
    26、(12分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)
    (1)求b,m的值
    (2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A.
    【解析】
    试题分析:由kx+b+3≤1得kx+b≤-3,
    直线y=kx+b与y轴的交点为B(1,-3),
    即当x=1时,y=-3,
    ∵函数值y随x的增大而增大,
    ∴当x≥1时,函数值kx+b≥-3,
    ∴不等式kx+b+3≥1的解集是x≥1.
    故选A.
    考点:一次函数与一元一次不等式.
    2、C
    【解析】
    过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
    【详解】
    解:过点B作BD⊥x轴于点D,
    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,
    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故选:C.
    本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
    3、D
    【解析】
    根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
    【详解】
    ∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A
    ∴△ABE≌△ACF(AAS),正确;
    ∵△ABE≌△ACF,AB=AC
    ∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
    ∴DF=DE故点D在∠BAC的平分线上,正确;
    ∵△ABE≌△ACF,AB=AC
    ∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
    ∴△BDF≌△CDE(AAS),正确;
    D. 无法判定,错误;
    故选D.
    4、B
    【解析】
    根据分母中含有字母的式子是分式,可得答案.
    【详解】
    解:是分式,
    故选:B.
    本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.
    5、C
    【解析】
    分析:根据矩形的判定方法逐项分析即可.
    详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
    B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
    C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;
    D、根据对角线相等不能得出四边形是矩形,故本选项错误;
    故选C.
    点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.
    6、D
    【解析】
    解:A.不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C.,故C错误;
    D.,正确.
    故选D.
    7、C
    【解析】
    首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
    【详解】
    解:∵E,F分别是AB,BC边上的中点,EF=,
    ∴AC=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=,OB=BD=2,
    ∴AB==,
    ∴菱形ABCD的周长为4.
    故选C.
    8、A
    【解析】
    由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
    【详解】
    解:在直角三角形AOB中,因为OA=2,OB=7
    由勾股定理得:AB=,
    由题意可知AB=A′B′=,
    又OA′=3,根据勾股定理得:OB′=2,
    ∴BB′=7-2<1.
    故选A.
    本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.
    【详解】
    解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1cm,
    ∴AB=1BC=4cm,
    ∵Rt△ABC中,∠ACB=90°,点D是AB的中点,
    ∴CD=AB=1cm.
    故答案为:1.
    本题考查含30°角的直角三角形的性质和直角三角形斜边上的中线的性质,能灵活运用定理进行推理是解答此题的关键.
    10、1
    【解析】
    根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.
    【详解】
    设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,
    由题意可得:小明跑了100秒后还需要200秒到达终点,而小刚跑了100秒后还需要100秒到达终点,则

    解得:,
    故这次越野跑的全程为:1600+300×2=1600+600=1(米),
    即这次越野跑的全程为1米.
    故答案为:1.
    本题考查了一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.
    11、﹣1<m<1
    【解析】
    试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
    解:∵点P(m﹣1,m+1)在第二象限,
    ∴m﹣1<0,m+1>0,
    解得:﹣1<m<1.故填:﹣1<m<1.
    【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    12、1
    【解析】
    先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
    【详解】
    解:∵,
    ∴m+1=2,
    ∴m=1.
    故答案为1.
    本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
    13、2:
    【解析】
    【分析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.
    【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
    ∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,
    即AF×DP=CE×DQ,
    ∴AF×DP=CE×DQ,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∵∠DAB=60°,
    ∴∠CBN=∠DAB=60°,
    ∴∠BFN=∠MCB=30°,
    ∵AB:BC=3:2,
    ∴设AB=3a,BC=2a,
    ∵AE:EB=1:2,F是BC的中点,
    ∴BF=a,BE=2a,
    BN=a,BM=a,
    由勾股定理得:FN=a,CM=a,
    AF==a,
    CE==2a,
    ∴a•DP=2a•DQ,
    ∴DP:DQ=2:,
    故答案为:2:.
    【点睛】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,求出AF×DP=CE×DQ和AF、CE的值是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.
    【详解】
    证明:四边形是平行四边形,
    ∴,.
    ∵,
    ∴.
    ∴,
    ∵,,
    ∴四边形是平行四边形.
    本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.
    15、(1)①,见解析;②,见解析;(2)
    【解析】
    (1)①利用配方法解方程;
    ②先计算判别式的值,然后利用求根公式解方程;
    (2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.
    【详解】
    解:当时,原方程为:
    ∴,
    ∴,
    ∴;

    ∴;
    方程有两个实数根,

    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.
    16、(1)见解析(2)①1;②2
    【解析】
    试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
    (2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
    ②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
    试题解析:(1)证明:∵四边形ABCD是菱形,
    ∴ND∥AM,
    ∴∠NDE=∠MAE,∠DNE=∠AME,
    又∵点E是AD边的中点,
    ∴DE=AE,
    ∴△NDE≌△MAE,
    ∴ND=MA,
    ∴四边形AMDN是平行四边形;
    (2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
    ∵AM=1=AD,
    ∴∠ADM=30°
    ∵∠DAM=60°,
    ∴∠AMD=90°,
    ∴平行四边形AMDN是矩形;
    ②当AM的值为2时,四边形AMDN是菱形.理由如下:
    ∵AM=2,
    ∴AM=AD=2,
    ∴△AMD是等边三角形,
    ∴AM=DM,
    ∴平行四边形AMDN是菱形,
    考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.
    17、(1)文学书的单价是1元,科普书的单价是2元;(2) 至少要购买52本科普书.
    【解析】
    (1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用200元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;
    (2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.
    【详解】
    解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,
    根据题意,得.
    解得x=1.
    经检验 x=1是原方程的解.
    当x=1时,x+8=2.
    答:去年购买的文学书的单价是1元,科普书的单价是2元;
    (2)设这所学校今年要购买y本科普书,
    根据题意,得1×(1+20%)(200﹣y﹣y)+2y≤2088
    解得y≥52
    答:这所学校今年至少要购买52本科普书.
    本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
    18、(1)见解析;(2)见解析;(3)3
    【解析】
    (1)证明是的中位线,得出,,由,即可得出四边形是平行四边形;
    (2)由直角三角形斜边上的中线性质得出,得出平行四边形为菱形,由菱形的性质即可得出结论;
    (3)证出为等腰直角三角形,得出,由等腰三角形的性质得出,,证出四边形为正方形,得出,,由勾股定理即可得出结果.
    【详解】
    (1)证明:点,分别是,边的中点,
    是的中位线,


    又,
    四边形是平行四边形;
    (2)解:,是边的中点,

    平行四边形为菱形,
    平分;
    (3)解:,,
    为等腰直角三角形,

    是边的中点,
    ,,
    四边形是菱形,
    四边形为正方形,
    ,,

    本题考查了平行四边形的判定与性质、三角形中位线定理、直角三角形斜边上的中线性质、菱形的判定与性质、正方形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明四边形是菱形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
    【详解】
    解:设这个多边形是n边形,由题意得,n-2=7,
    解得:n=9,
    故答案为:9.
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    20、1
    【解析】
    根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
    【详解】
    由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
    故答案为:1.
    考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
    21、
    【解析】
    根据一元二次方程的定义和根的判别式得到△=b2-4ac≥0,然后求出不等式的解即可.
    【详解】
    解: 有实数根
    ∴△=b2-4ac≥0即,解得:
    即的取值范围为:
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    22、
    【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。
    23、1.
    【解析】
    根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.
    【详解】
    ∵EF∥BC,GH∥AB,
    ∴四边形HPFD、四边形PGCF是平行四边形,
    ∵S△APH=2,CG=2BG,
    ∴S△DPH=2S△APH=4,
    ∴平行四边形HPFD的面积=1,
    ∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,
    ∴S四边形PGCD=4+4=1,
    故答案为1.
    本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    要证明∠BAE=∠DCF,可以通过证明△ABE≌△CDF,由已知条件BE=DF,∠ABE=∠CDF,AB=CD得来.
    【详解】
    解:∵四边形ABCD是平行四边形
    ∴AB∥CD,AB=CD
    ∴∠ABE=∠CDF
    ∵BE=DF
    ∴△ABE C≌△CDF
    ∴∠BAE=∠DCF
    本题考查全等三角形的判定和性质,该题较为简单,是常考题,主要考查学生对全等三角形的性质和判定以及平行四边形性质的应用.
    25、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
    【解析】
    试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、
    (1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;
    (3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出结论.
    试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
    ∵△ABC是正三角形,
    ∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
    ∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,
    ∴∠ABD=∠BCE,
    在△ABD和△BCE中,

    ∴△ABD≌△BCE(ASA);
    (1)△DEF是正三角形;理由如下:
    ∵△ABD≌△BCE≌△CAF,
    ∴∠ADB=∠BEC=∠CFA,
    ∴∠FDE=∠DEF=∠EFD,
    ∴△DEF是正三角形;
    (3)作AG⊥BD于G,如图所示:
    ∵△DEF是正三角形,
    ∴∠ADG=60°,
    在Rt△ADG中,DG=b,AG=b,
    在Rt△ABG中,c1=(a+b)1+(b)1,
    ∴c1=a1+ab+b1.
    考点:1.全等三角形的判定与性质;1.勾股定理.
    26、(1)-1;(2)或.
    【解析】
    (1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
    (2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
    【详解】
    (1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;
    ∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.
    (2)当x=a时,yC=2a+1;
    当x=a时,yD=4﹣a.
    ∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.
    题号





    总分
    得分
    相关试卷

    浙江省绍兴市柯桥区六校联盟2024-2025学年九年级数学第一学期开学考试试题【含答案】: 这是一份浙江省绍兴市柯桥区六校联盟2024-2025学年九年级数学第一学期开学考试试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    浙江省绍兴柯桥区七校联考2025届数学九年级第一学期开学检测模拟试题【含答案】: 这是一份浙江省绍兴柯桥区七校联考2025届数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省绍兴市柯桥区数学九年级第一学期开学监测试题【含答案】: 这是一份2024-2025学年浙江省绍兴市柯桥区数学九年级第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map