浙江省绍兴柯桥区七校联考2023-2024学年九上数学期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.反比例函数的图象如图所示,以下结论:
① 常数m <-1;
② 在每个象限内,y随x的增大而增大;
③ 若A(-1,h),B(2,k)在图象上,则h<k;
④ 若P(x,y)在图象上,则P′(-x,-y)也在图象上.
其中正确的是
A.①②B.②③C.③④D.①④
2.若反比例函数的图象在每一个信息内的值随的增大而增大,则关于的函数的图象经过( )
A.第一、三象限B.第二、四象限
C.第一、三、四象限D.第一、二、四象限
3.如图,在△ABC中,点D是在边BC上,且BD=2CD,=,=,那么等于( )
A.=+B.=+C.=-D.=+
4.一元二次方程x2﹣3x﹣4=0的一次项系数是( )
A.1B.﹣3C.3D.﹣4
5.若关于的方程的解为,,则方程的解为( )
A.B.C.D.
6.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )
A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)
7.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为( )
A.6B.10C.4D.6或10
8.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为( )
A.向左平移个单位,向下平移个单位
B.向左平移个单位,向上平移个单位
C.向右平移个单位,向下平移个单位
D.向右平移个单位,向上平移个单位
9.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为( )
A.20°B.25°C.30°D.35°
10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )
A.100(1+x)=121B.100(1-x)=121C.100(1+x)2=121D.100(1-x)2=121
11.下列各选项的事件中,发生的可能性大小相等的是( )
A.小明去某路口,碰到红灯,黄灯和绿灯
B.掷一枚图钉,落地后钉尖“朝上”和“朝下”
C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上
D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”
12.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.抛物线的对称轴为__________.
14.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.
15.如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=__________.
16.用一张半径为14cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是________ cm1.
17.若抛物线的顶点在坐标轴上,则b的值为________.
18.在平面直角坐标系中,点与点关于原点对称,则__________.
三、解答题(共78分)
19.(8分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.
(1)求∠ABC的度数;
(2)若AB=4,求阴影部分的面积.
20.(8分)在一个不透明的袋子里,装有3个分别标有数字﹣1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球.
(1)写出取一次取到负数的概率;
(2)小明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字.用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率.
21.(8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;
(2)试通过计算说明,哪个山上的杨梅产量较稳定?
22.(10分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.
(1)建立函数模型.
设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第 象限内交点的坐标.
(2)画出函数图象.
函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.
(3)平移直线y=﹣x,观察函数图象.
①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为 ;
②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
面积为9的矩形,它的周长m的取值范围为 .
23.(10分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)
24.(10分)已知:如图,正方形为边上一点,绕点逆时针旋转后得到.
如果,求的度数;
与的位置关系如何?说明理由.
25.(12分)某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).
(1)写出y与x的函数关系式;
(2)求W与x的函数关系式(不必写出x的取值范围)
(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?
26.(12分)综合与实践
在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.
探究展示:勤奋小组很快找到了点、的位置.
如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.
问题解决:
(1)按勤奋小组的这种折叠方式,的长度为 .
(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.
(3)在(2)的条件下,求出的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、B
5、C
6、C
7、D
8、D
9、B
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、
14、a<2且a≠1.
15、6+1.
16、110∏C㎡
17、±1或0
18、1
三、解答题(共78分)
19、(1)∠ABC=45°;(2)
20、(1);(2)
21、(1)甲、乙样本的平均数分别为:40kg,40kg;产量总和为7840千克(2)乙.
22、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1; 2个交点时,m>1;(4)m≥1.
23、见解析,
24、(1)20°,(2),详见解析
25、(1)y=30+5x(2)W=﹣5x2+20x+1;(3)降价4元(x不低于4元)时,销售这种商品每天获得的利润最大为1元
26、(1)3;(2)见解析;(3)
浙江省绍兴柯桥区七校联考2023-2024学年数学九上期末学业水平测试试题含答案: 这是一份浙江省绍兴柯桥区七校联考2023-2024学年数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
浙江省绍兴市柯桥区六校联盟2023-2024学年数学九上期末联考试题含答案: 这是一份浙江省绍兴市柯桥区六校联盟2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了抛物线可由抛物线如何平移得到的,方程x2=3x的解为等内容,欢迎下载使用。
浙江省绍兴柯桥区七校联考2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案: 这是一份浙江省绍兴柯桥区七校联考2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果为的是,平面直角坐标系中,点P的坐标是,下列各数中,是无理数,如果,那么的值为等内容,欢迎下载使用。