


浙江省湖州长兴县联考2025届数学九上开学学业水平测试模拟试题【含答案】
展开
这是一份浙江省湖州长兴县联考2025届数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
A.B.C.D.
2、(4分)如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为( )
A.2B.4C.6D.8
3、(4分)不等式x+1≥2x﹣1的解集在数轴上表示为( )
A.B.C.D.
4、(4分)永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是
A.28,27B.28,28C.28,30D.27,28
5、(4分)某校生物小组11人到校外采集标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个小组平均每人采集标本( )
A.3件B.4件C.5件D.6件
6、(4分)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是
A.40B.20C.10D.25
7、(4分)下列命题中的真命题是( )
A.有一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.对角线互相垂直平分的四边形是正方形
D.有一组邻边相等的平行四边形是菱形
8、(4分)已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )
A.4B.4或34C.16或34D.4或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.
10、(4分)16的平方根是 .
11、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.
12、(4分)如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.
13、(4分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了多少名学生?
(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;
(3)请将条形统计图补充完整.
15、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
16、(8分)如图,在中,,,,.
求的周长;
判断是否是直角三角形,并说明理由.
17、(10分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:
(1)此一次函数的解析式;
(2)△AOC的面积.
18、(10分)如图,在ABCD中,AB∥CD,AD=BC,∠B=60°,AC平分∠DAB.
(1)求∠ACB的度数;
(2)如果AD=1,请直接写出向量和向量的模.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若方程的两根为,,则________.
20、(4分)在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.
21、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
22、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
23、(4分)如图是由 5 个边长为 1 的正方形组成了“十”字型对称图形,则图中∠BAC 的度数是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是1.
求:(1)两条对角线的长度;(2)菱形的面积.
25、(10分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
26、(12分)如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据图像分析不同时间段的水面上升速度,进而可得出答案.
【详解】
已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.
能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.
2、D
【解析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.
【详解】
解:∵正方形ABCD,AD=4,
∴AB=AD=4=BC,
∵BC=2OB,
∴OB=2,
∴A(2,4),代入y=得:k=8,
故选:D.
本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.
3、B
【解析】
先求出不等式的解集,再根据不等式解集的表示方法,可得答案.
【详解】
移项,
得:x﹣2x≥﹣1﹣1,
合并同类项,
得:﹣x≥﹣2,
系数化为1,
得:x≤2,
将不等式的解集表示在数轴上如下:
.
故选B.
本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、B
【解析】
根据众数和中位数的意义进行分析.
【详解】
27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.
故选:28,28.
本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的意义.
5、B
【解析】
分析:根据平均数的定义列式计算可得.
详解:这个小组平均每人采集标本(件),
故选B.
点睛:本题考查的是平均数,解题的关键是熟练掌握平均数的定义.
6、B
【解析】
根据菱形的面积=对角线之积的一半,可知菱形的面积为5×8÷2=20.
故选B.
7、D
【解析】
根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.
【详解】
A、有两组对边平行的四边形是平行四边形,所以A选项错误;
B、有一个角是直角的平行四边形是矩形,所以B选项错误;
C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;
D、有一组邻边相等的平行四边形是菱形,所以D选项正确;
故选:D.
本题是对特殊四边形判断的考查,熟练掌握平行四边形,矩形,正方形,菱形的判断知识是解决本题的关键.
8、D
【解析】
解:∵个直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x=;
②当5是此直角三角形的直角边时,设另一直角边为x,则x=.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲
【解析】
试题解析:∵S2甲<S2乙,
∴甲机床的性能较好.
点睛:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10、±1.
【解析】
由(±1)2=16,可得16的平方根是±1.
11、
【解析】
利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.
【详解】
解:在矩形AEFG中,∠AEF=90°
∵∠AEB+∠AEF+∠CEF=180°,
∠CEF=15°
∴∠AEB=75°
∵∠BAE+∠B+∠AEB=180°
∠BAE=40°
∴∠B=65°
∵∠D=∠B
∴∠D=65°
故答案为65°
考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.
12、x > 1;
【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.
【详解】
∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,
∴不等式ax>kx+b的解集为x>1,
故答案为x>1.
本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.
13、
【解析】
利用解一元一次方程的一般步骤解出方程.
【详解】
ax﹣2x﹣5=0
(a﹣2)x=5
x=,
故答案为:.
本题考查了一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
三、解答题(本大题共5个小题,共48分)
14、(1)560人;(2)54°;(3)补图见解析.
【解析】
分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
详解:(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
15、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元
【解析】
(1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.
(2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.
【详解】
(1)解: 设购进A款书包x个,则B款为(100−x)个,
由题意得:30x+50(100−x)=3600,
解之:x=70,
∴100-x=100-70=30
答:A,B两款书包分别购进70和30个.
(2)解: 由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,
∵−1
相关试卷
这是一份浙江省杭州市名校2025届九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省湖州长兴县联考九年级数学第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
