|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】01
    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】02
    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】

    展开
    这是一份浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若是完全平方式,则的值应为( )
    A.3B.6C.D.
    2、(4分)直角三角形中,两直角边分别是6和8.则斜边上的中线长是( )
    A.B.C.D.
    3、(4分)矩形具有而平行四边形不一定具有的性质是( )
    A.对边相等B.对角相等
    C.对角线相等D.对角线互相平分
    4、(4分)如图,添加下列条件仍然不能使▱ABCD成为菱形的是( )
    A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2
    5、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
    A.=B.=
    C.=D.=
    6、(4分)两个一次函数与,它们在同一直角坐标系中的图象可能是( )
    A.B.
    C.D.
    7、(4分)如图 ,矩形 ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点 M,CN⊥AN于点 N.则 DM+CN 的值为(用含 a 的代数式表示)( )
    A.aB. aC.D.
    8、(4分)对于两组数据A,B,如果sA2>sB2,且,则( )
    A.这两组数据的波动相同B.数据B的波动小一些
    C.它们的平均水平不相同D.数据A的波动小一些
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线经过点,则不等式的解集为________________.
    10、(4分)已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.
    11、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1= 和y2= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:① ②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.
    12、(4分)有一个不透明的袋子里装有若干个大小相同、质地均匀的白球,由于某种原因,不允许把球全部倒出来数,但可以从中每次摸出一个进行观察.为了估计袋中白球的个数,小明再放入8个除颜色外,大小、质地均相同的红球,摇匀后从中随机摸出一个球并记下颜色,再把它放回袋中摇匀.这样不断重复摸球100次,其中有16次摸到红球,根据这个结果,可以估计袋中大约有白球_____个.
    13、(4分)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
    方案A:每千克5.8元,由基地免费送货;
    方案B:每千克5元,客户需支付运费2 000元.
    (1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
    (2)求购买量x在什么范围时,选用方案A比方案B付款少;
    (3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
    15、(8分)如图,在中,点分别在上,点在对角线上,且.求证:四边形是平行四边形.
    16、(8分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
    (1)求证:△ABC≌△DEF;
    (2)求证:四边形ACFD为平行四边形.
    17、(10分)已知直线分别交x轴于点A、交y轴于点
    求该直线的函数表达式;
    求线段AB的长.
    18、(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.
    (1)如图(1),若∠ACE=15°,BC=6,求EF的长;
    (2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
    20、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
    21、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.
    22、(4分)函数的图像与如图所示,则k=__________.
    23、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
    (1)求证:矩形DEFG是正方形.
    (2)当点E从A点运动到C点时;
    ①求证:∠DCG的大小始终不变;
    ②若正方形ABCD的边长为2,则点G运动的路径长为 .
    25、(10分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.
    (1)如图①,证明:BE=BF.
    (2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.
    (3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.
    26、(12分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB
    (1)求证:∠ABE=∠EAD;
    (2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    利用完全平方公式的结构特征判断即可确定出m的值.
    【详解】
    ∵=x2+mx+9,
    ∴m=±6,
    故选:D.
    此题考查完全平方式,熟练掌握完全平方公式是解题的关键.
    2、C
    【解析】
    利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:由勾股定理得,斜边==10,
    所以,斜边上的中线长=×10=1.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
    3、C
    【解析】
    根据矩形和平行四边形的性质进行解答即可.
    【详解】
    矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.
    矩形的对角线相等,而平行四边形的对角线不一定相等.
    故选C.
    本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.
    4、C
    【解析】
    根据菱形的性质逐个进行证明,再进行判断即可.
    【详解】
    A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项错误;
    B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形和∠ABC=90°不能推出,平行四边形ABCD是菱形,故本选项正确;
    D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,故本选项错误;
    故选C.
    本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.
    5、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    6、C
    【解析】
    根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.
    【详解】
    A、若a>0,b<0,符合,不符合,故不符合题意;
    B、若a>0,b>0,符合,不符合,故不符合题意;
    C、若a>0,b<0,符合,符合,故符合题意;
    D、若a<0,b>0,符合,不符合,故不符合题意;
    故选:C.
    此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
    7、C
    【解析】
    根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cs45°= ,所以DM+CN=CDcs45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
    【详解】
    ∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,
    ∴∠ADM=∠MDC=∠NCD=45°,
    ∴=CD,
    在矩形ABCD中,AB=CD=a,
    ∴DM+CN=acs45°=a.
    故选C.
    此题考查矩形的性质,解直角三角形,解题关键在于得到cs45°=
    8、B
    【解析】
    试题解析:方差越小,波动越小.

    数据B的波动小一些.
    故选B.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    根据一次函数与一元一次不等式的关系进行解答即可.
    【详解】
    解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,
    ∴k>0,b>0,
    ∴y随x的增大而增大,y随x的减小而减小,
    ∵直线y=kx+b(k≠0)经过点P(-1,2),
    ∴当y<2,即kx+b<2时,x<-1.
    故答案为x<-1.
    本题考查了一次函数与一元一次不等式的联系.
    10、m<2且m≠1
    【解析】
    根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m-1≠0,-m+2>0,
    解得m<2且m≠1.
    故答案为m<2且m≠1.
    本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
    11、①②④.
    【解析】
    作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有;由S△AOM=|k1|,S△CON=|k2|,得到S阴影=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.
    【详解】
    作AE⊥y轴于E,CF⊥y轴于F,如图,
    ∵四边形OABC是平行四边形,
    ∴S△AOB=S△COB,
    ∴AE=CF,
    ∴OM=ON,
    ∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,
    ∴,故①正确;
    ∵S△AOM=|k1|,S△CON=|k2|,
    ∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),
    而k1>0,k2<0,
    ∴S阴影部分=(k1-k2),故②正确;
    当∠AOC=90°,
    ∴四边形OABC是矩形,
    ∴不能确定OA与OC相等,
    而OM=ON,
    ∴不能判断△AOM≌△CNO,
    ∴不能判断AM=CN,
    ∴不能确定|k1|=|k2|,故③错误;
    若OABC是菱形,则OA=OC,
    而OM=ON,
    ∴Rt△AOM≌Rt△CNO,
    ∴AM=CN,
    ∴|k1|=|k2|,
    ∴k1=-k2,
    ∴两双曲线既关于x轴对称,也关于y轴对称,故④正确,
    故答案为:①②④.
    本题考查了反比例函数的综合题,涉及了反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质等,熟练掌握各相关知识是解题的关键.
    12、1
    【解析】
    【分析】由口袋中有8个红球,利用红球在总数中所占比例与实验比例应该相等,列方程求出即可.
    【详解】设袋中白球有x个,
    根据题意,得:,
    解得:x=1,
    经检验:x=1是原分式方程的解,
    即估计袋中大约有白球1个,
    故答案为:1.
    【点睛】本题考查了利用频率估计概率,根据已知得出红球在总数中所占比例应该与实验比例相等是解决本题的关键.
    13、1.
    【解析】
    由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.
    【详解】
    解:在Rt△ABC中,根据勾股定理,AB==13,
    又∵AC=12,BC=5,AM=AC,BN=BC,
    ∴AM=12,BN=5,
    ∴MN=AM+BN﹣AB=12+5﹣13=1.
    故答案是:1.
    本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)方案A:y=5.8x;方案B:y=5x+2 000(2)选用方案A比方案B付款少(3) B
    【解析】
    试题分析:(1)根据数量关系列出函数表达式即可;(2)先求出方案A应付款y与购买量x的函数关系为,方案B 应付款y与购买量x的函数关系为,然后分段求出哪种方案付款少即可;(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
    试题解析:(1)方案A:函数表达式为.
    方案B:函数表达式为
    (2)由题意,得.
    解不等式,得x<2500
    ∴当购买量x的取值范围为时,选用方案A比方案B付款少.
    (3)他应选择方案B.
    考点: 一次函数的应用
    15、证明见解析.
    【解析】
    根据SAS可以证明△MAE≌△NCF.从而得到EM=FN,∠AEM=∠CFN.根据等角的补角相等,可以证明∠FEM=∠EFN,则EM∥FN.根据一组对边平行且相等的四边形是平行四边形即可证明.
    【详解】
    证明:∵四边形是平行四边形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    在与中:
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴四边形是平行四边形.
    此题综合运用了平行四边形的性质和判定.能够根据已知条件和平行四边形的性质发现全等三角形是解题的关键.
    16、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析: (1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.
    试题解析:
    (1)证明:∵AB∥DE,
    ∴∠B=∠DEF,
    ∵BE=EC=CF,
    ∴BC=EF,
    在△ABC和△DEF中
    ∴△ABC≌△DEF.
    (2)证明:∵△ABC≌△DEF,
    ∴AC=DF,
    ∵∠ACB=∠F,
    ∴AC∥DF,
    ∴四边形ACFD是平行四边形,
    ∴AD∥CF,AD=CF,
    ∵EC=CF,
    ∴AD∥EC,AD=CE,
    ∴四边形AECD是平行四边形.
    17、(1);(2)AB=.
    【解析】
    把B点坐标代入中求出b即可;
    先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.
    【详解】
    解:把代入得,
    所以该直线的函数表达式为;
    当时,,解得,则,
    所以AB的长.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    18、(1)EF=6﹣;(2)见解析
    【解析】
    (1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=6,构建方程求出x,证明EF=BF,求出BF即可解决问题.
    (2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.
    【详解】
    解:(1)如图1中,
    ∵四边形ABCD是菱形,
    ∵AB=BC=CD=AD=6,AD∥BC,
    ∴∠ABC=180°﹣∠BAD=60°,
    ∴△ABC是等边三角形,
    ∴∠ACB=60°,
    ∵∠ACE=15°,
    ∴∠ECG=∠ACB﹣∠ACE=45°,
    ∵EG⊥CG,
    ∴∠EGC=90°,
    ∴EG=CG,
    设BG=x,则EG=CG=x,
    ∴x+x=6,
    ∴x=3﹣3,
    ∵四边形ABCD是菱形,
    ∴∠FBG=∠EBF=30°,
    ∵∠BEG=30°,
    ∴FB=FE,
    ∵BF===6﹣,
    ∴EF=6﹣.
    (2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.
    ∵EG⊥BC,MC⊥BC,
    ∴EF∥CM,
    ∴∠FEH=∠HCM,
    ∵∠EHF=∠CHM,EH=CH,
    ∴△EFH≌△CMH(ASA),
    ∴EF=CM,FH=HM,
    ∵EF=BF,
    ∴BF=CM,
    ∵∠ABF=∠ACM=30°,BA=CA,
    ∴△BAF≌△CAM(SAS),
    ∴AF=AM,∠BAF=∠CAM,
    ∴∠FAM=∠BAC=60°,
    ∴△FAM是等边三角形,
    ∵FH=HM,
    ∴AH⊥FM,∠FAH=∠FAM=×60°=30°,
    ∴AF=2FH.
    本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8
    【解析】
    解:设边数为n,由题意得,
    180(n-2)=3603
    解得n=8.
    所以这个多边形的边数是8.
    20、48°
    【解析】
    根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
    【详解】
    ∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
    ∴AC=DC,
    ∵∠CAB=66°,
    ∴∠CDA=66°,
    ∴∠ACD=180°-∠A-∠CDA=48°,
    ∴∠BCE=∠ACD=48°,
    故答案为:48°.
    本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
    21、三
    【解析】
    根据函数的平移规律,一次函数的性质,可得答案.
    【详解】
    由正比例函数的图象向上平移3个单位,得,
    一次函数经过一二四象限,不经过三象限,
    故答案为:三.
    本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.
    22、
    【解析】
    首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
    【详解】
    ∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
    ∴4=2x,
    解得:x=2,
    ∴交点坐标为(2,4),
    代入y=6-kx,6-2k=4,解得k=1.
    故答案为:1.
    本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
    23、1
    【解析】
    想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.
    【详解】
    解:∵四边形AEFG是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=1°
    故答案为:1.
    本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)详见解析;(2)①详见解析;②
    【解析】
    (1)要证明矩形DEFG为正方形,只需要证明它有一组临边(DE和EF)相等即可,而要证明两条线段相等,需证明它们所在的三角形全等,如下图本小题的关键是证明△EMF≌△END,∠MEF=∠NED可用等角的余角证明,EM=EN可用角平分线上的点到角两边距离相等,∠EMF和∠END为一组直角相等,所以可以用ASA证明它们全等;
    (2)此类题,前面的问题是给后面做铺垫,第一问已经证明四边形DEFG为正方形,结合第一问我们很容易发现并证明△ADE≌△CDG,从而得到∠DCG=∠CAD=45°;
    (3)当当E点在A处时,点G在C处;当E点在C处时,点G在AD的延长线上,并且AD=DG,以CD为边作正方形,我们会发现G点的运动轨迹刚好是正方形的对角线,它的长度等于.
    【详解】
    证明:(1)
    作EM⊥BC,EN⊥CD,
    ∵四边形ABCD为正方形
    ∴∠DCB=90°,∠ACB=∠ACD=45°
    又∵EM⊥BC,EN⊥CD,
    ∴EM=EN(角平分线上的点到角两边距离相等),
    ∠MEN=90°,
    ∴∠MEF+∠NEF=90°,
    ∵四边形DEFG为矩形,
    ∴∠DEF=90°,
    ∴∠NED+∠NEF=90°,
    ∴∠MEF=∠NED,
    在△EMF和△END中

    ∴△EMF≌△END,
    ∴DE=DF,
    ∴矩形DEFG为正方形;
    (2)①证明:∵正方形ABCD、DEFG
    ∴AD=CD,ED=GD
    ∵∠ADE+∠DEC=90°,∠CDG+∠EDC=90°
    ∴∠ADE=∠CDG
    在△ADE和△CDG中,
    ∵AD=CD,∠ADE=∠CDG,ED=GD
    ∴△ADE≌△CDG
    ∴∠DCG=∠EAD=45°
    ∴∠DCG的大小始终保持不变

    以CD为边作正方形DCPQ,连接QC
    ∴∠DCQ=45°,
    又∵∠DCG=45°
    ∴C、G、Q在同一条直线上,
    当E点在A处时,点G在C处;当E点在C处时,点G在Q处,
    ∴G点的运动轨迹为QC,
    ∵正方形ABCD的边长为2
    所以QC= ,
    即点G运动的路径长为
    (1)本题考查正方形的判定定理,有一组临边相等的矩形为正方形,所以此题的关键是证明DE=DF,我们可通过化辅助线,证明△ADE≌△CDG;
    (2)①本题考查的是全等三角形的判定定理和性质定理,结合第一问通过观察图象,我们会发现△ADE≌△CDG,所以∠DCG=∠EAD=45°;
    ②做这道题时,我们先构造模型,观察一下G点的起始位置和终点位置,结合①,我们会发现其实G点的运动轨迹刚好是正方形DCPQ的对角线,所以点G运动的路径长为.
    25、(1)详见解析;(2)GO⊥AC;(3)AH=OH
    【解析】
    (1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答
    (2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答
    (3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答
    【详解】
    (1)证明:如图①中,因为四边形ABCD为平行四边形,
    所以,AD∥EC,AB∥CD,
    所以,∠E=∠ADF,∠EFB=∠EDC,
    因为ED平分∠ADC,
    所以,∠ADF=∠EDC,
    所以,∠E=∠EFB,
    所以,BE=BF
    (2)解:如图⊙中,结论:GO⊥AC
    连接BG,AG
    ∵四边形ABCD是平行四边形,∠ADC=90°,
    四边形ABCD是矩形,
    ∠ABC=∠ABE=90°,
    由(1)可知:BE=BF,
    ∵∠EBF=90°,EG=FG,
    ∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,
    ∵∠DCE=90°
    ∴∠E=∠EDC=45°,
    ∴DC=CE=BA,
    ∵∠ABG=∠E=45°,AB=EC,BG=EG,
    ∴△ABG≌△CEG(SAS),
    ∵GA=GC
    ∴AO=OC.
    ∴GO⊥AC
    (3)解:如图⊙中,连接AK,BK,FK
    ∵BF=EK,BF∥EK,
    ∴四边形BFKE是平行四边形,
    ∵BF=BE,
    ∴四边形BFKE是菱形,
    ∵边形ABCD是平行四边形,
    ∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°
    ∴∠EBF=120°,
    ∴∠KBE=∠KBF=60°
    BF=BE=FK=EK,
    ∴△KBE,△KBF都是等边三角形,
    ∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30
    ∴∠CDE=∠CED=30°
    ∴CD=CE=BA,
    ∵BK=EK,
    ∴△ABK≌△CEK(SAS)
    ∴AK=CK,∠AKB=∠CKB
    ∴∠AKC=∠BKE=60°
    ∴△ACK是等边三角形
    ∵OA=OC,CH=HK
    ∴AK=2OH,AH⊥CK,
    ∴AH=AK·cs30°= AK
    ∴AH= OH.
    此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线
    26、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
    (2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
    【详解】
    证明:(1)∵在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠EAD.
    ∵AE=AB,
    ∴∠ABE=∠AEB.
    ∴∠ABE=∠EAD.
    (2)∵AD∥BC,
    ∴∠ADB=∠DBE.
    ∵∠ABE=∠AEB,∠AEB=2∠ADB,
    ∴∠ABE=2∠ADB.
    ∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
    ∴AB=AD.
    又∵四边形ABCD是平行四边形,
    ∴四边形ABCD是菱形.
    题号





    总分
    得分
    相关试卷

    浙江省富阳市2024-2025学年九上数学开学学业质量监测模拟试题【含答案】: 这是一份浙江省富阳市2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省天台县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年浙江省天台县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省绍兴市嵊州市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年浙江省绍兴市嵊州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map