终身会员
搜索
    上传资料 赚现金
    浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】
    立即下载
    加入资料篮
    浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】01
    浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】02
    浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】

    展开
    这是一份浙江省绍兴市越城区2025届九年级数学第一学期开学达标测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数的图象不经过( )象限
    A.第一B.第二C.第三D.第四
    2、(4分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )
    A. B.
    C. D.
    3、(4分)函数的自变量x的取值范围是( )
    A.x≠0B.x≠1C.x≥1D.x≤1
    4、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
    A.(2,2)B.(2,)C.(,2)D.(+1,
    5、(4分)一个纳米粒子的直径是 1 纳米(1 纳米= 0.000 000 001米),则该纳米粒子的直径 1 纳米用科学记数法可表示为( )
    A.0.110-8米 B.1109米 C.10 10-10米 D.110-9米
    6、(4分)已知 x<3,则化简结果是()
    A.-x-3B.x+3C.3-xD.x-3
    7、(4分)如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F、 N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有( )
    A.1个B.2个
    C.3个D.4个
    8、(4分)如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于 BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为( ).
    A.17B.16C.15D.14
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
    10、(4分)如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.
    11、(4分)若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为_____
    12、(4分)如图所示的是用大小相同(黑白两种颜色)的正方形砖铺成的地板,一宝物藏在某一块正方形砖下面,宝物在白色区域的概率是 .
    13、(4分)若一次函数的图象不经过第一象限,则的取值范围为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在中,,,点是的中点,,垂足为,连接.
    (1)如图1,与的数量关系是__________.
    (2)如图2,若是线段上一动点(点不与点、重合),连接,将线段绕点逆时针旋转得到线段,连接,请猜想三者之间的数量关系,并证明你的结论;
    15、(8分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.
    (1)A,B两种健身器材的单价分别是多少元?
    (2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?
    16、(8分)(1)若解关于 x的分式方程会产生增根,求 m的值.
    (2)若方程的解是正数,求 a的取值范围.
    17、(10分)已知关于x的方程2x2+kx-1=0.
    (1)求证:方程有两个不相等的实数根.
    (2)若方程的一个根是-1,求方程的另一个根.
    18、(10分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:
    (1)本次调查学生共 人,并将条形图补充完整;
    (2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
    (3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)把(a-2)根号外的因式移到根号内,其结果为____.
    20、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
    21、(4分)若二次根式有意义,则的取值范围是______.
    22、(4分)如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
    23、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.
    (1)求证:四边形ABCD是平行四边形;
    (2)求证:BF平分∠ABC;
    (3)请判断△BEF的形状,并证明你的结论.
    25、(10分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.
    (1)若,试求的值;
    (2)当,点是线段的中点时,试判断四边形的形状,并说明理由.
    (3)直线与轴相交于点.当四边形为正方形时,请求出的长度.
    26、(12分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
    (1)求证:四边形AMDN是平行四边形;
    (2)当AM的值为 时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.
    【详解】
    ∵一次函数y=−2x−1中,k=−2<0,b=−1<0,
    ∴此函数的图象经过二、三、四象限,
    故选A.
    此题考查一次函数的性质,解题关键在于判断出k、b的符号
    2、C
    【解析】
    根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C
    3、B
    【解析】
    根据题意若函数y=有意义,可得x-1≠0;
    解得x≠1;故选B
    4、B
    【解析】
    连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
    【详解】
    连接DB,如图,
    由作法得EF垂直平分AB,
    ∴DA=DB,
    ∵四边形ABCD是菱形,
    ∴AD∥BC,AD=AB,
    ∴AD=AB=DB,
    ∴△ADB为等边三角形,
    ∴∠DAB=60°,
    ∴∠ABO=60°,
    ∵A(0,),
    ∴OA=,
    ∴OB=OA=1,AB=2OB=2,
    ∴AD=AB=2,
    而AD平行x轴,
    ∴D(2,).
    故选:B.
    考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
    5、D
    【解析】
    用科学记数法表示比较小的数时,n的值是第一个不是1的数字前1的个数的相反数,包括整数位上的1.
    【详解】
    1.111 111 111= 111-9米.
    故选D.
    本题主要考查了科学记数法表示较小的数,n值的确定是解答本题的难点.
    6、C
    【解析】
    被开方数可以写成完全平方式,根据二次根式的性质,x<3去绝对值即可.
    【详解】
    解: ∵x<3, ∴3-x>0,
    ∴原式=.
    故选C.
    本题考查了二次根式的化简,注意二次根式的结果为非负数,解题的关键是要掌握二次根式的性质: .
    7、B
    【解析】
    连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,
    而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).
    【详解】
    连接DE.
    ∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,
    ∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,
    ∴点A. B. C. D. E都在以AC为直径的圆上,
    ∵AB=CD,
    ∴弧AB=弧CD,
    ∴∠AEB=∠CED,
    ∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,
    ∴BE⊥ED,故(1)正确;
    ∵点A. B. C. D. E都在以AC为直径的圆上,
    ∴∠AEF=∠CED,∠EAF=∠ECD,
    又∵△ACE为等腰直角三角形,
    ∴AE=CE,
    在△AEF和∉CED中,

    ∴△AEF≌△CED,
    ∴AF=CD,
    而CD=AB,
    ∴AB=AF,即(2)正确;
    ∴∠ABF=∠AFB=45°,
    ∴∠EMC=∠MCB+45°,
    而∠ECM=∠NCM+45°,
    ∵CM平分∠ACB交BN于M,
    ∴∠EMC=∠ECM,
    ∴EC=EM,
    ∴EM=EA,即(3)正确;
    ∵AB=AF,∠BAD=90°,EM=EA,
    ∴∠ABF=∠CBF=45°,∠EAM=∠AME,
    ∵△AEC是等腰直角三角形,
    ∴∠EAC=45°,
    ∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,
    ∴∠BAM=∠NAM,∴(4)正确;
    故选D.
    此题考查等腰三角形的判定与性质,圆周角定理,等腰直角三角形,解题关键在于作辅助线
    8、B
    【解析】
    根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.
    【详解】
    由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,
    ∴AF=AB,EF=EB,
    ∵AD∥BC,
    ∴∠FAE=∠AEB,
    ∴∠AEB=∠BAE,
    ∴BA=BE,
    ∴BA=BE=AF=FE,
    ∴四边形ABEF是菱形,
    ∴AE⊥BF
    ∵BF=12,AB=10,
    ∴BO=BF=6
    ∴AO=
    ∴AE=2AO=16
    故选B.
    本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1或3
    【解析】
    数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
    【详解】
    解:连接AC和BD交于一点O,
    四边形ABCD为菱形
    垂直平分AC,



    点P在线段AC的垂直平分线上,即BD上
    在直角三角形APO中,由勾股定理得


    如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
    如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
    故答案为:1或3
    本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
    10、①③④
    【解析】
    由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=4,
    ∵AC=BC,
    ∴AB=BC=CD=AD=AC,
    ∴△ABC,△ACD是等边三角形,
    ∴∠ABC=∠BAC=∠ACB=∠DAC=60°,
    ∵AC=BC,∠ABC=∠DAC,AF=BE,
    ∴△BEC≌△AFC(SAS)
    ∴CF=CE,∠BCE=∠ACF,
    ∴∠ECF=∠BCA=60°,
    ∴△EFC是等边三角形,
    ∴∠EFC=60°,
    ∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,
    ∴∠AFC=∠AGE,故①正确;
    ∵BE+DF=AF+DF=AD,EF=CF≤AC,
    ∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),
    故②不正确;
    ∵△ECF是等边三角形,
    ∴△ECF面积的EC2,
    ∴当EC⊥AB时,△ECF面积有最小值,
    此时,EC=2,△ECF面积的最小值为3,故③正确;
    如图,设AC与BD的交点为O,
    若AF=2,则FD=BE=AE=2,
    ∴点E为AB中点,点F为AD中点,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,
    ∴AO=AB=2,BO=AO=2,
    ∴BD=4,
    ∵△ABC是等边三角形,BE=AE=2,
    ∴CE⊥AB,且∠ABO=30°,
    ∴BE=EM=2,BM=2EM,
    ∴BM=,
    同理可得DN=,
    ∴MN=BD﹣BM﹣DN=,
    ∴BM=MN=DN,故④正确;
    如图,过点E作EH∥AD,交AC于H,
    ∵AF=BE=1,
    ∴AE=3,
    ∵EH∥AD∥BC,
    ∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,
    ∴△AEH是等边三角形,
    ∴EH=AE=3,
    ∵AD∥EH,
    ∴,
    ∴EG=3FG,故⑤错误,
    故答案为:①③④
    本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.
    11、<a≤1
    【解析】
    先将a看作常数解不等式,根据最小整数解为5,得1<≤5,解出即可.
    【详解】
    解不等式2x-3a+2≥0得x≥,
    ∵不等式的最小整数解为5,
    ∴1<≤5,
    ∴<a≤1,
    故答案为<a≤1.
    本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
    12、.
    【解析】
    解:根据图示可得:总的正方形有9个,白色的正方形有5个,
    则宝物在白色区域的概率是:.
    故答案为
    13、k≤-2.
    【解析】
    根据一次函数与系数的关系得到,然后解不等式组即可.
    【详解】
    ∵一次函数y=kx+k+2的图象不经过第一象限,

    ∴k≤-2.
    故答案为:k≤-2.
    本题考查了一次函数与系数的关系:对于一次函数y=kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
    三、解答题(本大题共5个小题,共48分)
    14、(1)DE=BC;(2)
    【解析】
    (1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,可得DE=BD=BC;
    (2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”判断△DCP≌△DBF,则CP=BF,利用CP+BP =BC,DE=BC可得到DE =(BF+BP).
    【详解】
    解:(1)∵∠ACB=90°,∠A=30°,
    ∴∠B=60°,
    ∵点D是AB的中点,
    ∴DB=DC,
    ∴△DCB为等边三角形,
    ∵DE⊥BC,
    ∴DE=BC;
    故答案为DE=BD=BC.
    (2)DE =(BF+BP).理由如下:
    ∵线段DP绕点D逆时针旋转60°,得到线段DF,
    ∴∠PDF=60°,DP=DF,
    而∠CDB=60°,
    ∴∠CDB-∠PDB=∠PDF-∠PDB,
    ∴∠CDP=∠BDF,
    在△DCP和△DBF中

    ∴△DCP≌△DBF(SAS),
    ∴CP=BF,
    而CP=BC-BP,
    ∴BF+BP=BC,
    ∵DE=BC,
    ∴DE =(BF+BP);
    故答案为DE =(BF+BP).
    本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.
    15、(1) A,B单价分别是360元,540元;(2)34件.
    【解析】
    (1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;
    (2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.
    【详解】
    解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,
    根据题意,可得:,
    解得:x=360,
    经检验x=360是原方程的根,
    1.5×360=540(元),
    因此,A,B两种健身器材的单价分别是360元,540元;
    (2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,
    根据题意,可得:360m+540(50﹣m)≤21000,
    解得:m≥,
    因此,A种型号健身器材至少购买34套.
    本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.
    16、(1)m=-1或2;(2)a<2且a≠-1
    【解析】
    (1)根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值.
    (2)先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.
    【详解】
    解:(1)方程两边都乘(x+2)(x-2),得
    2(x+2)+mx=3(x-2)
    ∵最简公分母为(x+2)(x-2),
    ∴原方程增根为x=±2,
    ∴把x=2代入整式方程,得m=-1.
    把x=-2代入整式方程,得m=2.
    综上,可知m=-1或2.
    (2)解:去分母,得2x+a=2-x
    解得:x=,
    ∵解为正数,
    ∴>0,
    ∴2-a>0,
    ∴a<2,且x≠2,
    ∴a≠-1
    ∴a<2且a≠-1.
    本题考查了分式方程的增根、分式方程的解、一元一次不等式,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    17、 (1)证明见解析;(2).
    【解析】
    (1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;
    (2)利用根与系数的关系可直接求出方程的另一个根.
    【详解】
    解:(1)∵△=k2+8>0,
    ∴不论k取何值,该方程都有两个不相等的实数根;
    (2)设方程的另一个根为x1,
    则,
    解得:,
    ∴方程的另一个根为.
    本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    18、(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)
    【解析】
    (1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;
    (2)用该校的总人数乘以“跑步”的人数所占的百分比即可;
    (3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.
    【详解】
    (1)根据题意得:120÷40%=300(人),
    所以本次共调查了300名学生;
    跳绳的有300﹣120﹣60﹣90=30人,补图如下:
    故答案为:300;
    (2)根据题意得:
    2000×40%=800(人),
    答:选择“跑步”这种活动的学生约有800人;
    (3)画树状图为:
    共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,
    所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-
    【解析】
    根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.
    故答案为-.
    20、y=2x+1.
    【解析】
    用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
    【详解】
    解:把(﹣1,2),(0,1)分别代入y=kx+b得,

    解得,
    所以,y=2x+1.
    故答案为y=2x+1.
    本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
    21、
    【解析】
    根据二次根式有意义的条件即可求解.
    【详解】
    依题意得a+1≥0,解得
    故填:
    此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.
    22、0.5
    【解析】
    经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.
    【详解】
    连接AC、OB,交于D点,作DE⊥OA于E点,
    ∵四边形OABC为矩形,
    ∴DE=AB=3,OE=OA=7.5,
    ∴D(7.5,3),
    ∵直线恰好将矩形OABC分成面积相等的两部分,
    ∴直线经过点D,
    ∴将(7.5,3)代入直线得:
    3=×7.5+b,
    解得:b=0.5,
    故答案为:0.5.
    本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.
    23、2
    【解析】
    根据中位数和众数的定义分析可得答案.
    【详解】
    解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
    所以这5个数据分别是x,y,2,1,1,且x<y<2,
    当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
    所以这组数据可能的最大的和是0+1+2+1+1=2.
    故答案为:2.
    主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)ΔBEF为等腰三角形,见解析.
    【解析】
    (1)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB//BC,即可得出四边形ABCD是平行四边形;
    (2)由平行四边形的性质得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;
    (3)作FG⊥BE于G,证出FG/AD//BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.
    【详解】
    解:(1)证明:∵AD∥BC,
    ∴∠A+∠ABC=180°:
    ∵∠A=∠C
    ∴∠C+∠ABC=180°
    ∴AB∥CD
    ∴四边形ABCD是平行四边形
    (2)证明:
    ∵F点为CD中点
    ∴CD=2CF
    ∴CD=2AD
    ∴CF=AD=BC
    ∴∠CFB=∠CBF
    ∴CD∥AB
    ∴∠CFB=∠FBA
    ∴∠FBA=∠CBF
    ∴BF平分∠ABC
    (3)ΔBEF为等腰三角形
    理由:如图,延长EF交B延长线于点G
    ∴DA∥BG
    ∴∠G=∠DEF
    ∵F为DC中点
    ∴DF=CF
    又∵∠DFE=∠CFG
    ∴ΔDFE≌ΔCFG(AAS)
    ∴FE=FG
    ∵AD∥BC,BE⊥AD
    ∴BE⊥CD
    ∴∠EBG=90°
    在RtΔEBG中,F为BG中点
    ∴BF=EG=EF
    ∴ΔBEF为等腰三角形.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质是解题的关键/
    25、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)
    【解析】
    (1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;
    (2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;
    (3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.
    【详解】
    (1)∵点N的坐标为(2,0),CN⊥x轴,且,
    ∴点C的坐标为(2,).
    ∵点C在反比例函数的图象上,
    ∴n=2×=1.
    (2)四边形ABCD为菱形,理由如下:
    当n=2时,.
    当x=2时,,
    ∴点C的坐标为(2,1),点A的坐标为(2,4).
    ∵点P是线段AC的中点,
    ∴点P的坐标为(2,).
    当y=时,,
    解得:,
    ∴点B的坐标为,点D的坐标为,
    ∴,
    ∴BP=DP.
    又∵AP=CP,AC⊥BD,
    ∴四边形ABCD为菱形.
    (3)∵四边形ABCD为正方形,
    ∴AC=BD,且点P为线段AC及BD的中点.
    当x=2时,y1=n,y2=2n,
    ∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,
    ∴点P的坐标为.
    同理,点B的坐标为,点D的坐标为,.
    ∵AC=BD,
    ∴,
    ∴,
    ∴点A的坐标为,点B的坐标为.
    设直线AB的解析式为y=kx+b(k≠0),
    将A,B代入y=kx+b,得:,
    解得:,
    ∴直线AB的解析式为y=x+.
    当x=0时,y=x+,
    ∴点E的坐标为(0,),
    ∴当四边形ABCD为正方形时,OE的长度为.
    本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.
    26、(1)见解析(2)当AM=2时,说明四边形是矩形
    【解析】
    (1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;
    (2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.
    【详解】
    (1)∵点E是AD边的中点,
    ∴AE=ED,
    ∵AB∥CD,
    ∴∠NDE=∠MAE,
    在△NDE和△MAE中,

    ∴△NDE≌△MAE(ASA),
    ∴ND=AM,
    ∵ND∥AM,
    ∴四边形AMDN是平行四边形;
    (2)当AM=2时,说明四边形是矩形.
    ∵E是AD的中点,
    ∴AE=2,
    ∵AE=AM,∠EAM=60°,
    ∴△AME是等边三角形,
    ∴AE=EM,
    ∴AE=ED=EM,
    ∴∠AMD=90°,
    ∵四边形ABCD是菱形,
    故当AM=2时,四边形AMDN是矩形.
    本题考查矩形的判定、菱形的性质和平行四边形的判定,解题的关键是掌握矩形的判定、菱形的性质和平行四边形的判定.
    题号





    总分
    得分
    批阅人
    相关试卷

    浙江省绍兴市越城区五校联考2025届九年级数学第一学期开学综合测试试题【含答案】: 这是一份浙江省绍兴市越城区五校联考2025届九年级数学第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省绍兴市阳明中学2024年九年级数学第一学期开学检测试题【含答案】: 这是一份浙江省绍兴市阳明中学2024年九年级数学第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份浙江绍兴市越城区2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map