岳阳市2025届数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( )
A.甲B.乙C.丙D.丁
2、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
3、(4分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16
4、(4分)下列一次函数中,y随x值的增大而减小的是( )
A.y=3﹣2xB.y=3x+1C.y=x+6D.y=(﹣2)x
5、(4分)计算(ab2)2的结果是( )
A.a2b4B.ab4C.a2b2D.a4b2
6、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
7、(4分)代数式有意义的取值范围是( )
A.B.C.D.
8、(4分)下列图象中不可能是一次函数的图象的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则=______.
10、(4分)如图,在矩形ABCD中,∠ABC的平分线交AD与点E,AB=2,BC=3,则CE=_____.
11、(4分)要使式子有意义,则的取值范围是__________.
12、(4分)反比例函数经过点,则________.
13、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.
三、解答题(本大题共5个小题,共48分)
14、(12分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?
(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
15、(8分)解不等式组并将解集在数轴上表示出来.
16、(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
17、(10分)如图,矩形的顶点A、C分别在、的正半轴上,反比例函数()与矩形的边AB、BC交于点D、E.
(1)若,则的面积为_________;
(2)若D为AB边中点.
①求证:E为BC边中点;
②若的面积为4,求的值.
18、(10分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.
(1)求证:△ADF≌△DCE;
(2)求GH的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
20、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.
21、(4分)已知整数x、y满足+3=,则的值是______.
22、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.
23、(4分)已知▱ABCD的周长为40,如果AB:BC=2:3,那么AB=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
25、(10分)已知,反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.
(1)求这个一次函数的表达式;
(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.
26、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.
(1)在图中以格点为顶点画一个面积为5的正方形.
(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.
【详解】
乙、丙同学的平均数比甲、丁同学的平均数大,
应从乙和丙同学中选,
丙同学的方差比乙同学的小,
丙同学的成绩较好且状态稳定,应选的是丙同学;
故选:.
主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.
2、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
3、D
【解析】
此题涉及的知识点是解直角三角形,根据题目中底面半径是5,高是12,可以算出另一边,吸管在罐外部分剩余3,不同放置就可以算出总长
【详解】
底面半径是5,高是12,则吸管最长放在罐里的长度为13,加上罐外的3,总长为16;如果吸管竖直放置,则罐里最短长为12,加上罐外3总长为15,所以吸管总长范围为:
故选D
此题重点考察学生对直角三角形的解的应用,勾股定理是解题的关键
4、A
【解析】
根据一次函数的性质对各选项进行逐一分析即可.关键看x的系数的正负.
【详解】
A.∵k=-2<0,∴y随x的增大而减小,故本选项正确;
B.∵k=3>0,∴y随x的增大而增大,故本选项错误;
C.∵k=>0,∴y随x的增大而增大,故本选项错误;
D.∵k=﹣2>0,∴y随x的增大而增大,故本选项错误.
故选:A.
本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.
5、A
【解析】
根据积的乘方的运算法则计算即可得出答案.
【详解】
故选:A.
本题主要考查积的乘方,掌握积的乘方的运算法则是解题的关键.
6、A
【解析】
试题分析:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴=<<,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.
考点:1.方差;2.算术平均数.
7、A
【解析】
解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.
故选A.
8、C
【解析】
分析:分别根据四个答案中函数的图象求出m的取值范围即可.
详解:A.由函数图象可知:,解得:1<m<3;
B.由函数图象可知,解得:m=3;
C.由函数图象可知:,解得:m<1,m>3,无解;
D.由函数图象可知:,解得:m<1.
故选C.
点睛:本题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
10、
【解析】
根据矩形的性质可得∠AEB=∠EBC,由BE是∠ABC的角平分线可得∠ABE=∠EBC,即可证明∠ABE=∠AEB,进而可得AE=AB,即可求出DE的长,利用勾股定理即可求出CE的长.
【详解】
∵ABCD是矩形,
∴AD//BC,CD=AB=2,AD=BC=3,
∴∠AEB=∠EBC,
∵BE是∠ABC的角平分线,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AE=AB=2,
∴DE=AD-AE=1,
在Rt△CDE中,CE==,
故答案为:
本题考查矩形的性质、勾股定理及等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
11、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
12、3
【解析】
把点代入即可求出k的值.
【详解】
解:因为反比例函数经过点,
把代入,得.
故答案为:3
本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
13、1.1.
【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.
【详解】
解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.
本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)6120元 (2)答应涨价为5元.
【解析】
【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;
(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.
【详解】(1)(500-8×20)×18=6120元,
答:每天的总毛利润是6120元;
(2) 设每千克涨元
,
,
,
,
(舍) ,
又由于顾客得到实惠,答应涨价为5元.
【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
15、1<x≤1.
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
,
由①得,x≤1,
由②得,x>1,
故不等式组的解集为:1<x≤1.
在数轴上表示为:
.
16、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.
【解析】
【分析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b,使用待定系数法求解即可;
(2)根据题意,从图象上看,30小时以内的上网费用都是60元;
(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x的值即可.
【详解】(1)当x≥30时,设函数关系式为y=kx+b,
则,
解得,
所以y=3x﹣30;
(2)若小李4月份上网20小时,由图象可知,他应付60元的上网费;
(3)把y=75代入,y=3x-30,解得x=35,
∴若小李5月份上网费用为75元,则他在该月份的上网时间是35小时.
【点睛】本题考查了一次函数的应用,待定系数法求一次函数关系式,准确识图、熟练应用待定系数法是解题的关键.
17、(1)1;(2)①见解析;②
【解析】
(1)根据题意,可设点E(a,),继而由三角形的面积公式即可求的面积;
(2)①设,则,,继而代入反比例函数可得x与a的关系,继而根据点B、点E的横坐标即可求证结论;
②利用分割法求出,再将数据代入解方程即可.
【详解】
解:(1)根据题意,可设点E(a,),
∴S△OCE=
故的面积为1;
(2)①证明:设,
∵为边中点,
∴,
∵点,在矩形的同一边上,
∴,
又∵点在反比例函数图像上,
∴,,
即,
∴为边中点,
(3),
,
∴,
∴.
本题考查反比例函数的图象与性质及矩形、三角形的面积公式,解题的关键是正确理解题意并掌握反比例函数的系数k的几何意义.
18、(1)详见解析;(2)
【解析】
(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;
(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=∠C=90°,
∵DF = CE,
∴△ADF≌△DCE(SAS);
(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,
∵∠DAF+∠DFA=90°,∴∠CDE +∠DFA=90°,
∴∠DGF=90°,∴∠AGE=90°,
∵AB=BC=6,EC=2,∴BE=4,
∵∠B=90°,∴AE==,
∵点H为AE的中点,∴GH=.
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
解:由平移的规律知,得到的一次函数的解析式为.
20、1.1.
【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.
【详解】
解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.
本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.
21、6或2或2
【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.
【详解】
∵+3==6,
又x、y均为整数,
∴=,3=0或=3,3=3或=0,3=,
∴x=72,y=0或x=18,y=2或x=0,y=8,
∴=6或2或2.
故答案为:6或2或2.
本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.
22、①③
【解析】
由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于,,于是得到,故③正确.
【详解】
解:∵BF⊥AD,
∴∠AFB=90°,
∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,
∴∠AFB=∠FBC=90°,故①正确;
如下图所示,延长FE交BC的延长线于M,
又∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠DFE=∠M,
且CD与MF交于点E,两相交直线对顶角相等,∴∠DEF=∠CEM,
又∵BE平分∠ABC,∴∠ABE=∠EBC,
而平行四边形ABCD中,AB∥CD,平行线之间内错角相等,∴∠CEB=∠ABE,
∴∠ABE=∠EBC=∠CEB,故BCE为等腰三角形,其中BC=CE,
又∵AB=2AD,故CD=2BC=2CE,∴CE=DE,
在DFE与CME中,
,
∴DFE≌CME(AAS),
∴EF=EM=FM,
又∵∠FBM=90°,∴BE=FM,
∴EF=BE,
∵EF≠DE,故②错误;
又∵EF=EM,∴,
∵△DFE≌△CME,∴,
∴,故③正确,
故答案为:①③.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,本题需要添加辅助线,构造出全等三角形DFE≌CME,这是解题的关键.
23、1.
【解析】
根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可.
【详解】
∵平行四边形ABCD的周长为40cm,AB:BC=2:3,
可以设AB=2a,BC=3a,
∴AB=CD,AD=BC,AB+BC+CD+AD=40,
∴2(2a+3a)=40,
解得:a=4,
∴AB=2a=1,
故答案为:1.
本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
利用平行四边形的性质得出 AO=CO,AD∥BC,进而得出∠EAC=∠FCO, 再利用 ASA 求出△AOE≌△COF,即可得出答案.
【详解】
∵▱ABCD 的对角线 AC,BD 交于点 O,
∴AO=CO,AD∥BC,
∴∠EAC=∠FCO,
在△AOE 和△COF 中,
∴△AOE≌△COF(ASA),
∴AE=CF.
本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.
25、(1)y=-x-2;(2)m2+n2=12;(2)S△MON=2
【解析】
(1)先求得A、B的坐标,然后根据待定系数法求解即可;
(2)由点P与点Q关于x轴对称可得点Q的坐标,然后根据图象上点的坐标特征可求得mn=2,n=m+2,然后代入所求式子整理化简即得结果;
(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,根据反比例函数系数k的几何意义,利用S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG即可求得结果.
【详解】
解:(1)∵反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1,
∴A(﹣1,﹣2),B(﹣2,﹣1),
设一次函数的表达式为y=kx+b,把A(﹣1,﹣2),B(﹣2,﹣1)代入,得:
,解得,
∴这个一次函数的表达式为y=﹣x﹣2;
(2)∵点P(m,n)与点Q关于x轴对称,∴Q(m,-n),
∵点P(m,n)在反比例函数图象上,∴mn=2,
∵点Q恰好落在一次函数的图象上,∴﹣n=﹣m﹣2,即n=m+2,
∴m(m+2)=2,∴m2+2m=2,
∴m2+n2=m2+(m+2)2=2m2+6m+9=2(m2+2m)+9=2×2+9=12;
(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,
∵M(x1,y1),N(x2,y2)是反比例函数y=在第一象限图象上的两点,
∴S△MOG=S△NOH==1,
∵x2-x1=2,y1+y2=2,
∴S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG===2.
本题考查了反比例函数与一次函数图象上点的坐标特征、待定系数法求函数解析式、反比例函数系数k的几何意义以及坐标系中三角形的面积等知识,属于常考题型,熟练掌握函数图象上点的坐标特征和反比例函数系数k的几何意义是解题的关键.
26、(1)见解析;(2)∠ABC=45°.
【解析】
(1)根据勾股定理作出边长为的正方形即可得;
(2)连接AC,根据勾股定理逆定理可得△ABC是以AC、BC为腰的等腰直角三角形,据此可得答案.
【详解】
(1)如图1所示:
(2)如图2,连AC,则
∵,即BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴∠ABC=∠CAB=45°.
本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均分
94
98
98
96
方差
1
1.2
1
1.8
泰安市2024-2025学年九上数学开学质量跟踪监视试题【含答案】: 这是一份泰安市2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省莱州市2025届九上数学开学质量跟踪监视试题【含答案】: 这是一份山东省莱州市2025届九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省广丰区2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份江西省广丰区2024年九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。