新疆乌鲁木齐市高新区(新市区)2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )
A.点M,点NB.点M,点QC.点N,点PD.点P,点Q
2、(4分)如图,在中,分别以点为圆心,大于长为半径作弧,两弧交于点,作直线分别交,于点,连接,下列结论错误的是( )
A.B.C.D.平分
3、(4分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长为( )
A.4+5B.2+10
C.4+5或2+10D.4+10
4、(4分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )
A.k<2,m>0B.k<2,m<0
C.k>2,m>0D.k<0,m<0
5、(4分)在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为( )
A. 或B.C.2D.2或10
6、(4分)下列交通标志图案是轴对称图形的是( )
A.B.C.D.
7、(4分)下列表达式中是一次函数的是( )
A.B.C.D.
8、(4分)下列选项中,能使分式值为的的值是( )
A.B.C.或D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个纳米粒子的直径是0.000 000 035米,用科学记数法表示为______米.
10、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.
11、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
则这组数据的中位数是__________.
12、(4分)如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.
13、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士” 组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样 调查了全市 40 个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行
处理(设所测数据均为正整数),得频数分布表如下:
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= , b= , c= ;
(2)补充完整频数分布直方图;
(3)如果全市共有 300 个测量点,那么在这一时刻噪声声级小于 75dB 的测量点约有多少个?
15、(8分)解方程:
(1);(2);(3);(4).
16、(8分)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
17、(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:
根据以上提供的信息,解答下列问题:
(1)a=_____,b=_____,c=______;
(2)补全上面的条形统计图;
(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?
18、(10分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h(即),并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.
(1)求点B和点C的坐标;
(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.
20、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
21、(4分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.
22、(4分)如图,△ABC是等边三角形,点A(-3,0),点B(3,0),点D是y轴上的一个动点,连接BD,将线段BD绕点B逆时针旋转60°,得到线段BE,连接DE,得到△BDE,则OE的最小值为______.
23、(4分)四边形的外角和等于 .
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).
(1)由图可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求点B的坐标;
②求a的值.
25、(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
其中,__________.
(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察图象,写出该函数的两条性质:
①____________________________________________________________
②____________________________________________________________
(4)进一步探究函数图象发现:
①方程的解是__________.
②方程的解是__________.
③关于的方程有两个不相等实数根,则的取值范围是__________.
26、(12分)计算:(1);(2)sin30°+cs30°•tan60°.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
画出中心对称图形即可判断
【详解】
解:观察图象可知,点P.点N满足条件.
故选:C.
本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、D
【解析】
根据题意可知DE是AB的垂直平分线,由此即可得出△AEB是等腰三角形,据此作出判断.
【详解】
由题可知,是的垂直平分线,
∴,,故A、C选项正确;
∵是等腰的外角,
∴,故B选项正确;
D无法证明,
故选:D.
本题考查了线段的垂直平分线的性质、等腰三角形的性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.
3、B
【解析】
∵该图形为等腰三角形,
∴有两边相等.
假设腰长为2,
∵2+2<5,
∴不符合三角形的三边关系,故此情况不成立.
假设腰长为5,
∵2+5﹥5,
∴满足三角形的三边关系,成立,
∴三角形的周长为2+10.
综上所述:这个三角形的周长为2+10.
故选B.
点睛: 此题主要考查了实数的运算、三角形的三边关系及等腰三角形的性质,解决本题的关键是注意对等腰三角形的边进行讨论.
4、A
【解析】
解:∵一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k﹣2<1,﹣m<1,∴k<2,m>1.故选A.
5、A
【解析】
直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.
【详解】
解:如图:分两种情况:
(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,
∴AB=2AP1=4,
∴OB=OA-AB=6-4=2,
在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;
(2)同理可求得AD=4,OD=OA+AD=10,
在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;
故选:A.
考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类.
6、C
【解析】
根据轴对称图形的概念对各选项分析判断后利用排除法求解.
【详解】
A. 不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项正确;
D.不是轴对称图形,故本选项错误;
故选C.
此题考查轴对称图形,解题关键在于识别图形
7、B
【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答
【详解】
A. 是反比例函数,故本选项错误;
B. 符合一次函数的定义,故本选项正确;
C. 是二次函数,故本选项错误;
D. 等式中含有根号,故本选项错误.
故选B
此题考查一次函数的定义,解题关键在于掌握其定义
8、D
【解析】
根据分子等于0,且分母不等于0列式求解即可.
【详解】
由题意得
,
解得
x=-1.
故选D.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.5×10-1.
【解析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000 000 035=3.5×10-1.
故答案为:3.5×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.
10、1
【解析】
先由矩形的性质求出CD= AB=3,再根据勾股定理可直接算出BD的长度.
【详解】
∵四边形ABCD是菱形,
∴CD= AB=3,
由勾股定理可知,BD==1.
故答案为1.
本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.
11、27℃
【解析】
根据中位数的求解方法,先排列顺序,再求解.
【详解】
解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
故答案为27℃.
本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
12、
【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.
【详解】
解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=5,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=25,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=25,
,即DQ+PQ的最小值为.
本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.
13、b(x﹣3)(b+1)
【解析】
用提公因式法分解即可.
【详解】
原式= b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).
故答案为:b(x﹣3)(b+1)
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、(1)a=8, b=12, c=0.3;(2)见解析;(3)90.
【解析】
(1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;
(2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;
(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.
【详解】
(1)根据频数与频率的正比例关系,可知 ,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;
(2)如图:
(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,
∴在这一时噪声声级小于75dB的测量点约有90个.
此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.
15、(1)x1=﹣3,x2=3;(2)x1=0,x2=﹣2;(3),;(4)x=﹣1
【解析】
(1)利用因式分解法解方程;
(2)利用因式分解法解方程;
(3)利用配方法解方程;
(4)去分母得到2(2x+1)=3(x﹣1),然后解整式方程后进行检验确定原方程的解.
【详解】
解:(1)(x+3)(x﹣3)=0,
x+3=0或x﹣3=0,
所以x1=﹣3,x2=3;
(2)x(x+2)=0,
x=0或x+2=0,
所以x1=0,x2=﹣2;
(3)x2﹣6x+9=8,
(x﹣3)2=8,
x﹣3=±2,
所以,;
(4)两边同时乘以(x﹣1)(2x+1),得
2(2x+1)=3(x﹣1),
解得x=﹣1,
经检验,原方程的解为x=﹣1.
本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解分式方程.
16、见解析
【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=DF,易证四边形EBFD是平行四边形,即可得出结论.
【详解】
解:∵在平行四边形ABCD中,AB∥CD且AB=CD
又∵AE=CF
∴AB-AE=CD-CF
∴BE=DF
∴四边形EBFD是平行四边形
∴DE=BF.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
17、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.
【解析】
(1)根据统计图和表格中的数据可以得到a、b、c的值;
(2)根据(1)中a的值,可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.
【详解】
解:(1)本次调查的学生有:18÷0.36=50(人),
a=50×0.2=10,
b=14÷50=0.28,
c=50,
故答案为:10、0.28、50;
(2)由(1)知,a=10,
补全的条形统计图如图所示;
(3)∵1200×(0.28+0.16)=528(名),
∴该校八年级学生课外阅读7本及以上的有528名.
本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
18、见解析
【解析】
试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.
解:(1)在Rt△AOB中,
∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.
∵OA=100 m,∴AB=200 m.
由勾股定理,得OB==100(m).
在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.
∴OC=OA=100 m.∴B(-100,0),C(100,0).
(2)∵BC=BO+CO=(100+100)m,≈18>,
∴这辆汽车超速了.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.
【详解】
解:解二元一次方程方程组
解得 或
则A点坐标为(-2,2),B点坐标为(2,-2)
C点坐标为(0,2),D点坐标为(2,-2)
所以AC∥BD,AC=BD=2
所以四边形ADBC是平行四边形
则==2××2×4=1,
故答案为1.
本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.
20、AB=BC(答案不唯一).
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
21、②③④
【解析】
分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.
详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:
①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;
②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;
③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;
平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.
∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;
方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;
故答案为②③.
点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.
22、
【解析】
取BC中点G,连接DG,由“SAS”可证△BGD≌△BOE,可得OE=DG,当DG⊥OC时,DG的值最小,由含30°角的直角三角形的性质即可求出DG的值,即OE最小值.
【详解】
如图,取BC中点G,连接DG,OE,
∵△ABC是等边三角形,点A(-3,0),点B(3,0),
∴AO=BO=3,∠BCO=30°,∠ABC=60°,
∴BC=AB=6,
∵点G是BC中点,
∴CG=BG=OA=OB=3,
∵将线段BD绕点B逆时针旋转60°,
∴∠DBE=60°,BD=BE,
∴∠ABC=∠DBE,
∴∠CBD=∠ABE,且BE=BD,BG=OB=3,
∴△BGD≌△BOE(SAS),
∴OE=DG,
∴当DG⊥OC时,DG的值最小,即OE的值最小.
∵∠BCO=30°,DG⊥OC
∴DG=CG=,
∴OE的最小值为.
故答案为
本题考查了全等三角形的判定和性质,等边三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.
23、360°.
【解析】
解:n(n≥3)边形的外角和都等于360°.
二、解答题(本大题共3个小题,共30分)
24、(1)x>﹣2;(2)①(1,6);②2.
【解析】
(1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了
(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1
所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;
②将B点代入y2=﹣4x+a中即可求出a值.
【详解】
解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,
∴不等式kx+b>0的解集是x>﹣2,
故答案为:x>﹣2;
(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,
∴ ,得,
∴一次函数y1=2x+4,
∵不等式kx+b>﹣4x+a的解集是x>1,
∴点B的横坐标是x=1,
当x=1时,y1=2×1+4=6,
∴点B的坐标为(1,6);
②∵点B(1,6),
∴6=﹣4×1+a,得a=2,
即a的值是2.
本题主要考查学生对于一次函数图像性质的掌握程度
25、(1)1;(2)见解析;(1)①函数值y≥2函数值y≥2;②当x>1时,y随x的增大而增大;(4)①;②或;③.
【解析】
(1)求出x=-2时的函数值即可;
(2)利用描点法画出函数图象即可;
(1)结合图象写出两个性质即可;
(4)分别求出方程的解即可解决问题;
【详解】
解:(1)x=-2时,y=|x-1|=1,故m=1,故答案为1.
(2)函数图象如图所示:
(1)①函数值y≥2,②当x>1时,y随x的增大而增大;
故答案为函数值y≥2;当x>1时,y随x的增大而增大;
(4)①方程|x-1|=2的解是x=1
②方程|x-1|=1.5的解是x=2.5或-2.5
③关于x的方程|x-1|=a有两个实数根,则a的取值范围是a>2,
故答案为x=1,x=2.5或-2.5,a>2.
本题考查一次函数的图象与性质、一次函数与一元一次方程的关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
26、(1);(2)2
【解析】
试题分析:(1)根据二次根式的乘除法法则计算即可;
(2)根据特殊角的锐角三角函数值计算即可.
解:(1)原式;
(2)原式.
考点:实数的运算
点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
题号
一
二
三
四
五
总分
得分
地区
合川
永川
江津
涪陵
丰都
梁平
云阳
黔江
温度(℃)
25
26
29
26
24
28
28
29
组别
噪声声级分组
频数
频率
1
44.5~59.5
4
0.1
2
59.5~74.5
a
0.2
3
74.5~89.5
10
0.25
4
89.5~104.5
b
c
5
104.5~119.5
6
0.15
合计
40
1.00
本数(本)
人数(人数)
百分比
5
a
0.2
6
18
0.36
7
14
b
8
8
0.16
合计
c
1
…
0
1
2
3
4
5
…
…
4
2
1
0
1
2
3
4
…
河南省郑州高新区八一中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份河南省郑州高新区八一中学2024年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
新疆乌鲁木齐市沙依巴克区2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份新疆乌鲁木齐市沙依巴克区2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年新疆乌鲁木齐市高新区(新市区)八上数学期末学业质量监测试题含答案: 这是一份2023-2024学年新疆乌鲁木齐市高新区(新市区)八上数学期末学业质量监测试题含答案,共8页。试卷主要包含了若分式的值等于0,则的值为,用科学记数法表示等内容,欢迎下载使用。