咸宁市通城县2025届数学九年级第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知函数y=kx-k的图象如图所示,则k的取值为( )
A.k<0B.k>0C.k≥0D.k≤0
2、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF
3、(4分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )
A.11.8 米B.11.75 米
C.12.3 米D.12.25 米
4、(4分)如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为( )
A.B.C.D.
5、(4分)在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上作等腰三角形,且含边长为4的所有大小不同的等腰三角形的个数为( )
A.6B.5C.4D.3
6、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是( )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
7、(4分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( )
A.B.C.D.
8、(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是( )
A.120°B.115°C.105°D.100°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数与的图象交于点P,则点P的坐标为______.
10、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
11、(4分)如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.
12、(4分)若有意义,则x的取值范围是____.
13、(4分)菱形的两条对角线长分别是6和8,则菱形的边长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,点E在BC上,AE=CE,试分别在下列两个图中按要求使用无刻度的直尺画图.
(1)在图1中,画出∠DAE的平分线;
(2)在图2中,画出∠AEC的平分线.
15、(8分)计算:(1);(2)sin30°+cs30°•tan60°.
16、(8分)为贯彻落实关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛.本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛.下面是某县初赛时选手成绩的统计图表(部分信息未给出).
请根据图表信息回答下列问题:
(1)在频数分布表中, , .
(2)请将频数直方图补充完整;
(3)若测试成绩不低于120分为优秀,则本次测试的优秀率是多少?
17、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是_____km/h;
(2)当1≤x≤5时,求y乙关于x的函数解析式;
(3)当乙与A地相距240km时,甲与A地相距_____km.
18、(10分)(1)因式分解:x3-4x2+4x
(2)解方程:
(3)解不等式组,并将其解集在数轴上表示出来
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
20、(4分)函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.
21、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是 ______ .
22、(4分)方程的解是_______.
23、(4分)若关于的两个方程与有一个解相同,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:
(1);(2).
25、(10分)仿照下列过程:
;
;
(1)运用上述的方法可知:= ,= ;
(2)拓展延伸:计算:++…+.
26、(12分)如图所示,已知是的外角,有以下三个条件:①;②∥;③.
(1)在以上三个条件中选两个作为已知,另一个作为结论写出一个正确命题,并加以证明.
(2)若∥,作的平分线交射线于点,判断的形状,并说明理由
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.
【详解】
由图象知:函数y=kx-k中y随着x的增大而减小,
所以k<0,
∵交与y轴的正半轴,
∴-k>0,
∴k<0,
故选:A.
考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
2、C
【解析】
试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.
3、A
【解析】
在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.
【详解】
根据题意可构造相似三角形模型如图,
其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;
延长FE交AB于G,则Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影长=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即树高为11.8米.
此题考查相似三角形的应用,解题关键在于画出图形.
4、B
【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=,可得G(,3).
【详解】
解:如图:
∵▱AOBC的顶点O(0,0),A(-1,3),
∴AH=1,HO=3,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=,
∴G(,3),
故选:B.
本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
5、B
【解析】
①以A为圆心,以4为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取2个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取2个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取4个单位,再作着个线段的垂直平分线交CD一点,连接即可,⑥以A为端点在AD上截取4个单位,再作这条线段的垂直平分线交BC一点,连接即可(和⑤大小一样);⑦以A为端点在AD上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交CD一个点,连接即可(和③大小一样).
【详解】
解:满足条件的所有图形如图所示:
共5个.
故选:B.
本题考查了正方形的性质,等腰三角形的判定,解题的关键是掌握等腰三角形的判定方法.
6、D
【解析】
证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.
【详解】
解:∵四边形AGFE为矩形,
∴∠GAE=90°,∠EAB=90°;
由题意,△AEF绕点A旋转得到△ABC,
∴AF=AC;∠FAE=∠CAB,
∴∠FAC=∠EAB=90°,
∴△ACF是等腰直角三角形.
故选:D.
本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.
7、B
【解析】
试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
小强
小华 石头 剪刀 布
石头 (石头,石头) (石头,剪刀) (石头,布)
剪刀 (剪刀,石头) (剪刀,剪刀) (剪刀,布)
布 (布,石头) (布,剪刀) (布,布)
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小颖平局的概率为:.
故选B.
考点:概率公式.
8、A
【解析】
如解图所示,根据多边形的外角和即可求出∠5,然后根据平角的定义即可求出结论.
【详解】
解:∵∠1=∠2=∠3=∠4=75°,
∴∠5=360°﹣75°×4=360°﹣300°=60°,
∴∠AED=180°﹣∠5=180°﹣60°=120°.
故选:A.
此题考查的是多边形的外角和平角的定义,掌握多边形的外角和都等于360°是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (3,0)
【解析】
解方程组,可得交点坐标.
【详解】
解方程组
,
得
,
所以,P(3,0)
故答案为(3,0)
本题考核知识点:求函数图象的交点. 解题关键点:解方程组求交点坐标.
10、1
【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.
【详解】
解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.
本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.
11、x<﹣1
【解析】
观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.
【详解】
当x<-1时,k1x+b1>k1x+b1,
所以不等式k1x+b1>k1x+b1的解集为x<-1.
故答案为x<-1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、x≥1.
【解析】
直接利用二次根式有意义的条件进而分析得出答案.
【详解】
∵有意义,∴x≥1,
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
13、1
【解析】
根据菱形对角线垂直平分,再利用勾股定理即可求解.
【详解】
解:因为菱形的对角线互相垂直平分,
根据勾股定理可得菱形的边长为=1.
故答案为:1.
此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.
三、解答题(本大题共5个小题,共48分)
14、作图见解析
【解析】
试题分析:(1)连接AC,再由平行线的性质及等腰三角形的性质可知AC是∠DAE的平分线;
(2)连接AC,BD交于点F,连接EF,由平行线的性质及等腰三角形的性质可知AC是∠AEC的平分线.
试题解析:
(1)如图1所示.
;
(2)如图2所示.
.
考点:作图﹣基本作图
15、(1);(2)2
【解析】
试题分析:(1)根据二次根式的乘除法法则计算即可;
(2)根据特殊角的锐角三角函数值计算即可.
解:(1)原式;
(2)原式.
考点:实数的运算
点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
16、 (1)m=0.2,n=20;(2)图见解析;(3)50%.
【解析】
(1)根据成绩在105≤x<120的频数和频率可以求得本次调查的人数,从而可以求得m、n的值;
(2)根据(1)中n的值,可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以得到本次测试的优秀率.
【详解】
解:(1)由表可知:105≤x<120的频数和频率分别为15、0.3,
∴本次调查的人数为:15÷0.3=50,
∴m=10÷50=0.2,
n=50×0.4=20,
故答案为:0.2,20;
(2)由(1)知,n=20,
补全完整的频数分布直方图如右图所示;
(3)成绩不低于120分为优秀,则本次测试的优秀率:(0.4+0.1)×100%=50%,
答:本次测试的优秀率是50%.
本题考查频数分布直方图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.
17、(1)V甲=60km/h (2)y乙=90x-90 (3)220
【解析】
(1)根据图象确定出甲的路程与时间,即可求出速度;
(2)利用待定系数法确定出y乙关于x的函数解析式即可;
(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.
【详解】
(1)根据图象得:360÷6=60km/h;
(2)当1≤x≤5时,设y乙=kx+b,
把(1,0)与(5,360)代入得: ,
解得:k=90,b=-90,
则y乙=90x-90;
(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,
∴乙用的时间是240÷90=h,
则甲与A地相距60×(+1)=220km.
此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.
18、(1)x(x-2)2(2)x=2(3)-≤x<2
【解析】
(1)原式提取公因式,再利用完全平方公式分解即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出解集即可.
【详解】
解:(1)原式=x(x2-4x+4)=x(x-2)2;
(2)去分母得:x-2x+6=4,
解得:x=2,
经检验x=2是分式方程的解;
(3),
由①得:x≥-,
由②得:x<2,
∴不等式组的解集为-≤x<2,
此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3.
【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
【详解】
解:∵等腰直角三角形ABC,等腰直角三角形CDE
∴∠ECD=45°,∠ACB=45°
即AC⊥EC,且CE∥BF
当AG⊥BF,时AG最小,
所以由∵AF=AE
∴AG=CG=AC=3
故答案为3
本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
20、y=2x-6
【解析】
根据“左加右减,上加下减”的原则进行解答即可.
【详解】
解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.
故答案为y=2x-6.
本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.
21、(-4,3),或(-1,3),或(-9,3)
【解析】
∵A(-10,0),C(0,3),
, .
∵点D是OA的中点,
.
当 时, , .
当 时,,
,
当 时, , .
当 时,不合题意.
故答案有三种情况.
【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类 的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.
22、
【解析】
观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
解:两边同时乘以得,
,
解得,,
检验:当时,,不是原分式方程的解;
当时,,是原分式方程的解.
故答案为:.
本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
23、1
【解析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.
【详解】
解:解方程得x1=2,x2=−1,
∵x+1≠0,
∴x≠−1,
把x=2代入中得:,
解得:a=1,
故答案为1.
此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.
二、解答题(本大题共3个小题,共30分)
24、(2)原方程无解;(2)x= 2
【解析】
根据去分母,去括号转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(2)解:方程两边同乘(x-2),得3x+2=2.解这个方程,得x=2.
经检验:x=2是增根,舍去,所以原方程无解。
(2)解:方程两边同乘(x2),得2x=x22.
解这个方程,得x= 2.
经检验:x= 2是原方程的解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要注意验根.
25、(1)﹣2、-;(2)﹣1.
【解析】
(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;
(2)由=﹣将原式展开后,两两相互抵消即可得.
【详解】
(1)===﹣2,
===,
(2)原式=﹣1+﹣﹣+…+﹣=﹣1.
本题主要考查分母有理化,解题的关键是掌握分母有理化和根据计算得出规律.
26、(1)①③作为条件,②作为结论,见解析;(2)等腰三角形,见解析
【解析】
(1)根据题意,结合平行线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题;
(2)作出图形,利用平行线的性质和角平分线的定义证明即可.
【详解】
(1)证明:∵,
∴,,
∵,
∴,
∴AC=BC
(2)是等腰三角形,理由如下:
如图:
∵,
∴
∵BF平分,
∴,
∴,
∴BC=FC,
∴是等腰三角形
本题考查的是平行线的性质以及角平分线的性质,本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.
题号
一
二
三
四
五
总分
得分
2025届咸宁市通城县数学九上开学监测模拟试题【含答案】: 这是一份2025届咸宁市通城县数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省咸宁市通城县2023届九年级下学期开学考试数学试卷(含解析): 这是一份湖北省咸宁市通城县2023届九年级下学期开学考试数学试卷(含解析),共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
湖北省咸宁市通城县2023届九年级下学期开学考试数学试卷(含解析): 这是一份湖北省咸宁市通城县2023届九年级下学期开学考试数学试卷(含解析),共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。