终身会员
搜索
    上传资料 赚现金

    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】

    立即下载
    加入资料篮
    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】第1页
    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】第2页
    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】

    展开

    这是一份四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,,,的垂直平分线分别交于点,若,则的长是( )
    A.4B.3C.2D.1
    2、(4分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为( )
    A.2B.4C.D.
    3、(4分)如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为( )
    A.1:2B.1:3C.1:4D.
    4、(4分)已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是( )
    A.(,)B.(,)C.(-3,-1)D.(-3,)
    5、(4分)一组数据2,2,4,3,6,5,2的众数和中位数分别是
    A.3,2B.2,3C.2,2D.2,4
    6、(4分)矩形、菱形和正方形的对角线都具有的性质是( )
    A.互相平分B.互相垂直C.相等D.任何一条对角线平分一组对角
    7、(4分)如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为( )
    A.4B.5C.6D.7
    8、(4分)一个三角形的三边分别是3、4、5,则它的面积是( )
    A.6B.12C.7.5D.10
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形ABCD中,AB=2cm,BC=12cm,点P在边BC上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为秒.当=______时,四边形ABPQ为平行四边形;
    10、(4分)某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.
    11、(4分)如图,已知在△ABC 中,D、E 分别是 AB、AC 的中点,BC=6cm,则DE 的长度是_____ cm.
    12、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
    13、(4分)直线过第_________象限,且随的增大而_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)计算:
    (2)解方程:-1=
    15、(8分)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.
    (1)用实线把图①分割成六个全等图形;
    (2)用实线把图②分割成四个全等图形.
    16、(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.
    (1)求抛物线的解析式;
    (2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;
    (3)求△BCE的面积最大值.
    17、(10分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.
    18、(10分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.
    (1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);
    (2)求A、B两城之间的距离,及t为何值时两车相遇;
    (3)当两车相距300千米时,求t的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.
    20、(4分)如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有_______个;如果关于的不等式组(其中,为正整数)的整数解仅有,那么适合这个不等式组的整数,组成的有序数对共有______个.(请用含、的代数式表示)
    21、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
    22、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
    23、(4分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:
    (1)求图中的值,并求出所在直线方程;
    (2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟
    ①求所在直线的函数解析式;
    ②该运动员跑完赛程用时多少分钟?
    25、(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
    (1)写出点M的坐标;
    (2)求直线MN的表达式;
    (3)若点A的横坐标为-1,求矩形ABOC的面积.
    26、(12分)如图,在□ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).
    (1)在图1中,过点A画出△ABF中BF边上的高AG;
    (2)在图2中,过点C画出C到BF的垂线段CH.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    连接BE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠ABE=∠A,然后根据三角形的内角和定理求出∠CBE,再根据30°角所对的直角边等于斜边的一半求出CE.
    【详解】
    如图,连接BE,
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠ABE=∠A=30°,
    在△ABC中,∠CBE=180°-∠A-∠ABE-∠C=180°-30°-30°-90°=30°,
    ∴CE=BE=×4=2,
    故选C.
    本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.
    2、A
    【解析】
    【分析】连接BD,利用菱形性质和三角形中位线性质可解得.
    【详解】连接BD,
    因为,四边形ABCD是菱形,
    所以,AB=AD=4,
    又因为∠A=60°,
    所以,三角形ABD是等边三角形.
    所以,BD=AB=AD=4
    因为,E,F是DP、BP的中点,
    所以,EF是三角形ABD的中位线,
    所以,EF=BD=2
    故选A
    【点睛】本题考核知识点:菱形,三角形中位线.解题关键点:理解菱形,三角形中位线性质.
    3、C
    【解析】
    由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.
    【详解】
    根据作图知,BE=CE=BC,
    ∴△BEC是等边三角形,
    ∴∠EBC=60°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,AB=BC,
    ∴∠ABE=∠ABC-∠EBC=90°-60°=30°,
    设AB=BC=a,过点E作EF⊥AB于点F,如图,
    则EF=BE=a,
    ∴.
    故选C.
    此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.
    4、C
    【解析】
    分析:根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.
    详解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.
    ∵C(﹣2,0),D(0,2),
    ∴OC=OD,
    ∴∠OCD=45°,
    ∴△ABC是等腰直角三角形,
    ∴B(﹣3,1).
    故选C.
    本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解本题的关键.
    5、B
    【解析】
    根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.
    【详解】
    解:这组数据从小到大排列是:2,2,2,3,4,5,6,
    出现次数最多的数是2,故众数是2;
    处在中间位置的数,即处于第四位的数是中位数,是3,
    故选:.
    考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.
    6、A
    【解析】
    因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.
    【详解】
    解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.
    故选:A.
    此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.
    7、B
    【解析】
    当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.
    【详解】
    当B在x轴上时,对角线OB长度最小,如图所示:
    直线x=1与x轴交于点D,直线x=4与x轴交于点E,
    根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,
    四边形ABCD是平行四边形,
    ∴OA∥BC,OA=BC,
    ∴∠AOD=∠CBE,
    在△AOD和△CBE中,

    ∴△AOD≌△CBE(AAS),
    ∴OD=BE=1,
    ∴OB=OE+BE=5,
    故答案为:5.
    本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
    8、A
    【解析】
    由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.
    【详解】
    ∵32+42=52,∴此三角形是直角三角形,
    ∴S△=×3×4=1.
    故选:A.
    本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    因为在平行四边形ABCD中,AQ∥BP,只要再证明AQ=BP即可,即点P所走的路程等于Q点在边AD上未走的路程.
    【详解】
    由已知可得:BP=2t,DQ=t,
    ∴AQ=12−t.
    ∵四边形ABPQ为平行四边形,
    ∴12−t=2t,
    ∴t=4,
    ∴t=4秒时,四边形ABPQ为平行四边形.
    本题考查了平行四边形的性质,解题的关键是找到等量关系AQ=BP.
    10、87.1
    【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.
    详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).
    故答案为:87.1.
    点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.
    11、1
    【解析】
    根据三角形中位线定理进行解答即可得.
    【详解】
    ∵D、E 分别是 AB、AC 的中点,
    ∴DE 是△ABC 的中位线,
    ∴DE=BC==1cm,
    故答案为1.
    本题考查了三角形中位线定理,熟练掌握三角形的中位线平行于第三边, 并且等于第三边的一半是解题的关键.
    12、3
    【解析】
    先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
    【详解】
    ∵▱ABCD的对角线AC、BD相交于点O,
    ∴OB=OD,AD=BC=6
    ∵点E是CD的中点,
    ∴CE=DE,
    ∴OE是△BCD的中位线,
    ∵AD=6,
    ∴OE=AD=3.
    故答案为:3
    此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
    13、【解析】
    根据一次函数的性质解答即可.
    【详解】
    解:∵-2<0,1>0,
    ∴直线过第一、二、四象限,且随的增大而减小,
    故答案为:一、二、四;减小.
    本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)3+2;(2)原方程无解
    【解析】
    (1)利用乘法公式展开,然后合并即可;
    (2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.
    【详解】
    解:(1)原式=5+5-3-2
    =3+2;
    (2)去分母得(x-2)2-(x+2)(x-2)=16,
    解得x=-2,
    检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,
    所以原方程无解.
    本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.
    15、 (1)见解析;(2)见解析.
    【解析】
    设正方形的面积为2,则等腰直角三角形的面积为1,
    (1)根据题意,分成的每一个图形的面积为 ,分成六等腰个直角三角形即可;
    (2)根据题意,分成的每一个图形的面积为 ,分成四个直角梯形即可.
    【详解】
    解:如图所示:
    本题考查复杂作图,根据面积确定出分成的每一个图形的面积是解题的关键,难度中等,但不容易考虑.
    16、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.
    【解析】
    分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.
    详解:(1)∵抛物线 过点A(1,0)和B(1,0)

    (2)∵
    ∴点C为线段DE中点
    设点E(a,b)

    ∵0<m<1,
    ∴当m=1时,纵坐标最小值为2
    当m=1时,最大值为2
    ∴点E纵坐标的范围为
    (1)连结BD,过点D作x轴的垂线交BC于点H
    ∵CE=CD
    ∴H(m,-m+1)

    当m=1.5时,
    .
    点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.
    17、证明见解析
    【解析】
    由平行四边形性质得,,,又证≌,可得,.
    【详解】
    证明:
    四边形ABCD是平行四边形,
    ,,




    在和中,

    ≌,

    本题考核知识点:平行四边形性质,全等三角形. 解题关键点:由全等三角形性质得到线段相等.
    18、(1)S甲=-180t+600,S乙=120t;(2)A、B两城之间的距离是600千米,t为2时两车相遇;(1)当两车相距100千米时,t的值是1或1.
    【解析】
    (1)根据函数图象可以分别求得S甲、S乙与t的函数关系式;
    (2)将t=0代入S甲=-180t+600,即可求得A、B两城之间的距离,然后将(1)中的两个函数相等,即可求得t为何值时两车相遇;
    (1)根据题意可以列出相应的方程,从而可以求得t的值.
    【详解】
    (1)设S甲与t的函数关系式是S甲=kt+b,
    ,得,
    即S甲与t的函数关系式是S甲=-180t+600,
    设S乙与t的函数关系式是S乙=at,
    则120=a×1,得a=120,
    即S乙与t的函数关系式是S乙=120t;
    (2)将t=0代入S甲=-180t+600,得
    S甲=-180×0+600,得S甲=600,
    令-180t+600=120t,
    解得,t=2,
    即A、B两城之间的距离是600千米,t为2时两车相遇;
    (1)由题意可得,
    |-180t+600-120t|=100,
    解得,t1=1,t1=1,
    即当两车相距100千米时,t的值是1或1.
    本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、答案为甲
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    解: =83(分),
    =82(分);
    经计算知S甲2=6,S乙2=1.
    S甲2<S乙2,
    ∴甲的平均成绩高于乙,且甲的成绩更稳定,
    故答案为甲
    本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    20、6 pq
    【解析】
    (1)求出不等式组的解集,根据不等式组的解集和已知得出,,求出a b的值,即可求出答案;
    (2)求出不等式组的解集,根据不等式组的解集和已知得出,,即,;结合p,q为正整数,d,e为整数可知整数d的可能取值有p个,整数e的可能取值有q个,即可求解.
    【详解】
    解:(1)解不等式组,得不等式组的解集为:,
    ∵关于的不等式组的整数解仅有1,2,
    ∴,,
    ∴4≤b<6,0<a≤3,
    即b的值可以是4或5,a的值是1或2或3,
    ∴适合这个不等式组的整数a,b组成的有序数对(a,b)可能是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),
    ∴适合这个不等式组的整数a,b组成的有序数对(a,b)共6个;
    (2)解不等式组(其中,为正整数),
    解得:,
    ∵不等式组(其中p,q为正整数)的整数解仅有c1,c2,…,cn(c1<c2<…<cn),
    ∴,,
    ∴,,
    ∵p,q为正整数
    ∴整数d的可能取值有p个,整数e的可能取值有q个,
    ∴适合这个不等式组的整数d,e组成的有序数对(d,e)共有pq个;
    故答案为:6;pq.
    本题考查了一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的一般步骤.
    21、3或1.
    【解析】
    由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
    【详解】
    解:∵AC=BC=10,
    ∴∠CAB=∠CBA,
    由旋转的性质知,△ACB≌△AED,
    ∴AE=AC=10,∠CAB=∠EAD=∠CBA,
    ①∵∠DAF=∠CBA,
    ∴∠DAF=∠EAD,
    ∴A,F,E三点在同一直线上,如图1所示,
    过点C作CH⊥AB于H,
    则AH=BH=AB=7,
    ∵EP⊥AC,
    ∴∠EPA=∠CHA=90°,
    又∵∠CAH=∠EAP,CA=EA,
    ∴△CAH≌△EAP(AAS),
    ∴AP=AH=7,
    ∴PC=AC-AP=10-7=3;
    ②当D,A,C在同一条直线上时,如图2,
    ∠DAF=∠CAB=∠CBA,
    此时AP=AD=AB=7,
    ∴PC=AC+AP=10+7=1.
    故答案为:3或1.
    本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
    22、
    【解析】
    由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
    【详解】
    ∵1160°÷180°=6…80°,
    又∵100°+80°=180°,
    ∴这个内角度数为100°,
    故答案为:100°.
    本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
    23、3
    【解析】
    根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.
    【详解】
    解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,
    ∴△APP′是等腰直角三角形,
    由勾股定理得PP′=.
    故答案为:.
    本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)①;②85分钟
    【解析】
    (1)根据路程=速度×时间,再把A点的值代入即可解决问题.
    (2)①先求出A、B两点坐标即可解决问题.
    ②令s=0,求出x的值即可解决问题.
    【详解】
    解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,
    ∴千米.
    ∴,
    设直线的解析式为:,
    把代入,得

    解得,,
    ∴直线的解析式为:;
    (2)①∵直线解析式为,
    ∴当时,,解得,
    ∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,
    ∴小明从起点到第二次经过C点所用的时间是,分钟,
    ∴直线经过,,
    设直线解析式,
    ∴,,
    解得,,
    ∴直线解析式为.
    ②小明跑完赛程用的时间即为直线与轴交点的横坐标,
    ∴当时,,解得,
    ∴小明跑完赛程用时85分钟.
    此题考查一次函数综合题,解题关键在于列出方程.
    25、 (1)(-2,0);(2)该y=3x+6;(3) S矩形ABOC=3.
    【解析】
    (1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出点M的坐标;
    (2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
    (3)将A点横坐标代入y=3x+6,求出纵坐标,即可表示出S矩形ABOC.
    【详解】
    (1)∵N(0,6)
    ∴ON=6
    ∵ON=3OM
    ∴OM=2
    ∴M点坐标为(-2,0);
    (2)该直线MN的表达式为y=kx+b,分别把M(-2,0),N(0,6)代入,
    得 解得
    ∴直线MN的表达式为y=3x+6.
    (3)在y=3x+6中,当x=-1时,y=3,∴OB=1,AB=3,
    ∴S矩形ABOC=1×3=3.
    本题考查的知识点是待定系数法求函数解析式和利用一次函数解决实际问题和矩形的面积的运用,解题关键是利用图像进行解题.
    26、 (1)见解析;(2)见解析.
    【解析】
    (1)连接AE,交BF于点G,则AG即为所求,理由为:AB=AE,BF平分∠ABC,根据等腰三角形三线合一的性质可得BG⊥AG;
    (2)连接AC、BD交于点O,连接EO并延长交AD于点G,连接CG交BF于点H,CH即为所求,理由:由平行四边形的性质以及作法可得△BOE≌△DOG,由此可得DG=BE=AB=CD,继而可得CG平分∠BCD,由AB//CD可得∠ABC+∠BCD=180°,继而可得∠FBC+∠GCB=90°,即∠BHC=90°,由此即可得答案.
    【详解】
    (1)如图1,AG即为所求;
    (2)如图2,CH即为所求.
    本题考查了作图——无刻度直尺作图,涉及了等腰三角形的性质,平行四边形的性质等知识,熟练掌握相关知识是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】:

    这是一份四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省雅安中学2024-2025学年数学九上开学质量检测模拟试题【含答案】:

    这是一份四川省雅安中学2024-2025学年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省射洪市2024-2025学年数学九上开学达标检测模拟试题【含答案】:

    这是一份四川省射洪市2024-2025学年数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map