2024-2025学年四川省自贡市名校九上数学开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
A.1,,2B.1,2,
C.5,12,13D.1,,
2、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
3、(4分)下列命题中,假命题是( )
A.对角线互相平分的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直平分的四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
4、(4分)下列计算结果,正确的是( )
A.B.C.D.
5、(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是( )
A.36°B.45°C.54°D.72°
6、(4分)下列从左边到右边的变形,是因式分解的是( )
A.y2﹣2y+4=(y﹣2)2
B.10x2﹣5x=5x(2x﹣1)
C.a(x+y)=ax+ay
D.t2﹣16+3t=(t+4)(t﹣4)+3t
7、(4分)用配方法解方程时,原方程应变形为( )
A.B.C.D.
8、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )
A.20B.24C.40D.48
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知在正方形中,,则正方形的面积为__________.
10、(4分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
11、(4分)直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为 .
12、(4分)如图平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠B=50°时,∠EAF的度数是______°.
13、(4分)在△ABC中,AB=8,BC=2 ,AC=6,D是AB的中点,则CD=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
15、(8分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
16、(8分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.
(1)小芳家与学校之间的距离是多少?
(2)写出与的函数表达式;
(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?
17、(10分)如图,是平行四边形的对角线,,分别交于点.
求证:.
18、(10分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.
(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为 ;
(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值 ;
(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;
(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点. 设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________。
20、(4分)一天,小明放学骑车从学校出发路过新华书店买了一本课外书再骑车回家,他所行驶的路程s与时间t的关系如图,则经18分钟后,小明离家还有____千米.
21、(4分)等腰三角形的腰长为5,底边长为8,则它底边上的高为_______,面积为________.
22、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.
23、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)
(2)()()
25、(10分)计算题:
(1);
(2);
(3);
(4).
26、(12分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)求的面积;
(3)点在轴上,且是等腰三角形,请直接写出点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:A、∵12+()2=22,∴能组成直角三角形;
B、∵12+22=()2,∴能组成直角三角形;
C、∵52+122=132,∴能组成直角三角形;
D、∵12+()2≠()2,∴不能组成直角三角形.
故选D.
考点:勾股定理的逆定理.
2、A
【解析】
试题分析:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴=<<,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.
考点:1.方差;2.算术平均数.
3、D
【解析】
根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.
【详解】
A.对角线互相平分的四边形是平行四边形,是真命题;
B.对角线互相平分且相等的四边形是矩形,是真命题;
C.对角线互相垂直平分的四边形是菱形,是真命题;
D.对角线互相垂直且相等的四边形是正方形,是假命题;
故选D.
本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.
4、C
【解析】
按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.
【详解】
A.与不是同类二次根式,不能合并,故此选项错误;
B.,故此选项错误;
C.,正确;
D.不能化简了,故此选项错误.
故选:C.
此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.
5、A
【解析】
由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.
【详解】
解:设∠A=x°,
∵BD=AD,
∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,
∵BD=BC,
∴∠BDC=∠BCD=2x°,
∵AB=AC,
∴∠ABC=∠BCD=2x°,
在△ABC中x+2x+2x=180,
解得:x=36,
∴∠C=∠BDC=72°,
∴∠DBC=36°,
故选:A.
此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.
6、B
【解析】
根据因式分解的意义,可得答案.
【详解】
A.分解不正确,故A不符合题意;
B.把一个多项式转化成几个整式积的形式,故B符合题意;
C.是整式的乘法,故C不符合题意;
D.没把一个多项式转化成几个整式积的形式,故D不符合题意.
故选B.
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
7、A
【解析】
先将常数项移到右侧,然后在方程两边同时加上一次项一半的平方,左侧配方即可.
【详解】
,
x2-4x=9,
x2-4x+4=9+4,
,
故选A.
本题考查了配方法,正确掌握配方法的步骤以及注意事项是解题的关键.
8、A
【解析】
分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,
故这个菱形的周长L=4AB=1.
故选A.
点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.
【详解】
如图,
∵AC的长为4,
∴正方形ABCD的面积为×42=1,
故答案为:1.
本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.
10、+1.
【解析】
分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,
∴阴影部分的面积为×9=6,
∴空白部分的面积为9-6=1,
由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,
∴△BCG的面积与四边形DEGF的面积相等,均为×1=,
设BG=a,CG=b,则ab=,
又∵a2+b2=12,
∴a2+2ab+b2=9+6=15,
即(a+b)2=15,
∴a+b=,即BG+CG=,
∴△BCG的周长=+1,
故答案为+1.
点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
11、(-1,0),(2,0)
【解析】
(1)若将直线沿轴向上平移3个单位,则平移后所得直线的解析式为:,
在中,由可得:,解得:,
∴平移后的直线与轴的交点坐标为:;
(2)若将直线沿轴向下平移3个单位,则平移后所得直线的解析式为:,
在中,由可得:,解得:,
∴平移后的直线与轴的交点坐标为:;
综上所述,平移后的直线与轴的交点坐标为:或.
12、1
【解析】
先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.
【详解】
解:∵平行四边形ABCD中,∠B=1°,
∴∠C=130°,
又∵AE⊥BC于E,AF⊥CD于F,
∴四边形AECF中,∠EAF=360°-180°-130°=1°,
故答案为:1.
本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.
13、4
【解析】
先运用勾股定理逆定理得出△ABC是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可得出CD的长.
【详解】
解:在△ABC中,AB=8,BC=2,AC=6,
82=64=(2)2+62,
所以AB2=BC2+AC2,
所以△ABC是直角三角形,
∵D是AB的中点,
∴CD=AB=4,
故答案为:4
本题考查勾股定理逆定理,解题关键根据勾股定理逆定理及直角三角形斜边上的中线等于斜边的一半的性质解答.
三、解答题(本大题共5个小题,共48分)
14、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠3,2=∠1.
∵MN∥BC,∴∠1=∠3,3=∠1.
∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.
∴OE=OF.
(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.
∵CE=12,CF=3,∴.
∴OC=EF=1.3.
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
当O为AC的中点时,AO=CO,
∵EO=FO,∴四边形AECF是平行四边形.
∵∠ECF=90°,∴平行四边形AECF是矩形.
【解析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠2,进而得出答案.
(2)根据已知得出∠2+∠2=∠3+∠1=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.
(3)根据平行四边形的判定以及矩形的判定得出即可.
15、见解析
【解析】
证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.
【详解】
证法一:连接AD.
∵AB=AC,点D是BC边上的中点,
∴AD平分∠BAC(等腰三角形三线合一性质),
∵DE、DF分别垂直AB、AC于点E和F,
∴DE=DF(角平分线上的点到角两边的距离相等).
证法二:在△ABC中,
∵AB=AC,
∴∠B=∠C(等边对等角).
∵点D是BC边上的中点,
∴BD=DC ,
∵DE、DF分别垂直AB、AC于点E和F,
∴∠BED=∠CFD=90°.
在△BED和△CFD中
∵,
∴△BED≌△CFD(AAS),
∴DE=DF(全等三角形的对应边相等).
本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.
16、 (1)1400;(2);(3)小芳的骑车速度至少为.
【解析】
(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;
(2)利用待定系数法求出反比例函数解析式;
(3)利用y=8进而得出骑车的速度.
【详解】
(1)小芳家与学校之间的距离是:();
(2)设,当时,,
解得:,
故与的函数表达式为:;
(3)当时,,
,在第一象限内随的增大而减小,
小芳的骑车速度至少为.
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
17、详见解析
【解析】
根据平行四边形的性质,证明全等即可证明结论.
【详解】
证明:四边形是平行四边形,
,.
.
.
.
.
.
本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.
18、(1)Q;(2)-;(3)(-4,),(-,4);(4)1
【解析】
(1)根据“垂点”的意义直接判断即可得出结论;
(2)根据“垂点”的意义建立方程即可得出结论;
(3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;
(4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.
【详解】
解:(1)∵P(1,2),∴1+2=3,1×2=2,
∵2≠3,∴点P不是“垂点”,
∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.
∵N(,﹣1),∴+1=×1=,
∵,∴点N不是“垂点”,
故答案为Q;
(2)∵点 M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,
故答案为﹣;
(3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,
∵“垂点矩形”的面积为,∴﹣ab=.
即:﹣a+b=﹣ab=,
解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),
故答案为(﹣4,)或(﹣,4),.
(4)设点E(m,0)(m>0),
∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)
∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,
∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,
故答案为1.
本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.1
【解析】
根据题意求得CD=BC=2,即可求得OD=,由△POA的面积是△PCD面积的2倍,得出xP=3,根据△POD的面积等于2k﹣8,列出关于k的方程,解方程即可求得.
【详解】
∵▱OABC的顶点A的坐标为(2,0),
∴BD∥x轴,OA=BC=2,
∵反比例函数和的图象分别经过C,B两点,
∴DC•OD=k,BD•OD=2k,
∴BD=2CD,
∴CD=BC=2,BD=1,
∴C(2,),B(1,),
∴OD=,
∵△POA的面积是△PCD面积的2倍,
∴yP=,
∴xP==3,
∵△POD的面积等于2k﹣8,
∴OD•xP=2k﹣8,即×3=2k﹣8,
解得k=6.1,故答案为6.1.
本题考查反比例函数系数k的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P的横坐标是解题的关键.
20、0.1
【解析】
根据待定系数法确定函数关系式,进而解答即可.
【详解】
解:设当15≤t≤20时,s关于t的函数关系式为s=kt+b,
把(15,2)(20,3.5)代入s=kt+b,可得:,
解得:,
所以当15≤t≤20时,s关于t的函数关系式为s=0.3t﹣2.5,
把t=18代入s=0.3t﹣2.5中,可得:s=2.9,
3.5﹣2.9=0.1,
答:当t=18时,小明离家路程还有0.1千米.
故答案为0.1.
本题考查了一次函数的图象的性质的运用,行程问题的数量关系速度=路程÷时间的运用,解答时理解清楚函数图象的数据的含义是关键.
21、3 1
【解析】
根据等腰三角形的性质求得高的长,从而再根据面积公式求得面积即可.
【详解】
解:根据等腰三角形的三线合一得底边上的高也是底边的中线,则底边的一半是4,根据勾股定理求得底边上的高是3,则三角形的面积=×8×3=1.故答案为:3,1.
本题考查了等腰三角形的性质和勾股定理.综合运用等腰三角形的三线合一以及直角三角形的勾股定理是解答本题的关键.
22、或
【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.
【详解】
根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),
则×2×|b|=1,
解得|b|=1,
∴b=±1,
①当b=1时,与y轴交点为(0,1),
∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;
②当b=-1时,与y轴的交点为(0,-1),
∴2k-1=0,解得k=,∴函数解析式为y=-x-1,
综上,这个一次函数的解析式是或,
故答案为:或.
本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.
23、(2n-1,2n-1)
【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
【详解】
解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
∴,
解得:,
∴直线A1A2的解析式是:y=x+1.
∵点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴点B3的坐标为(7,4),
∴Bn的横坐标是:2n-1,纵坐标是:2n-1.
∴Bn的坐标是(2n-1,2n-1).
故答案为: (2n-1,2n-1).
此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)直接化简二次根式进而计算得出答案;
(2)直接利用二次根式的乘法运算法则计算得出答案.
【详解】
(1)原式
.
(2)原式
.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
25、(1);(2);(3);(4)
【解析】
(1)先计算零指数和负整数指数次幂,再从左至右计算即可;
(2)根据多项式除单项式的运算法则计算即可;
(3)利用平方差公式进行简便运算即可;
(4)利用平方差公式展开,再运用完全平方公式进一步展开即可.
【详解】
(1)
;
(2)
;
(3)
;
(4)
.
本题考查了有理数的混合运算以及整式的混合运算,熟练掌握平方差公式的结构特征是解题的关键.
26、(1);;(2)10;(3)或或或
【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.
(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.
(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.
【详解】
解:(1)正比例函数的图象经过点,
,
,
正比例函数解析式为
如图1中,过作轴于,
在中,,
解得
一次函数解析式为
(2)如图1中,过作轴于,
(3))如图2中,当OP=OA时,P(−5,0),P (5,0),
当AO=AP时,P (8,0),
当PA=PO时,线段OA的垂直平分线为y=− ,
∴P,
∴满足条件的点P的坐标或或或
此题考查一次函数综合题,解题关键在于作辅助线.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省遂宁市射洪中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年四川省遂宁市射洪中学九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省江油市六校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年四川省江油市六校九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。