|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】01
    四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】02
    四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】

    展开
    这是一份四川省广安市华蓥市第一中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)当x=2时,下列各式的值为0的是( )
    A.B.C. D.
    2、(4分)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是( )
    A.7cmB.9 cmC.12cmD.14cm
    3、(4分)下列事件中,属于随机事件的是( )
    A.抛出的篮球往下落B.在只有白球的袋子里摸出一个红球
    C.购买张彩票,中一等奖D.地球绕太阳公转
    4、(4分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为( )
    A.40°B.80°C.70°D.50°
    5、(4分)估计的值在下列哪两个整数之间( )
    A.6和7之间B.7和8之间C.8和9之间D.无法确定
    6、(4分)课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),已知,∠ACB=90°,AC=BC, AB=1.如果每块砖的厚度相等,砖缝厚度忽略不计,那么砌墙砖块的厚度为( )
    A.B.C.D.5
    7、(4分)下列长度的三条线段,能成为一个直角三角形的三边的一组是( )
    A.B.1,2,C.2,4,D.9,16,25
    8、(4分)如图,矩形沿折叠,使点落在边上的点处,如果,那么的度数是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)成立的条件是___________________.
    10、(4分)如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.
    11、(4分)已知,在梯形中,,,,,那么下底的长为__________.
    12、(4分)分解因式:_____.
    13、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
    三、解答题(本大题共5个小题,共48分)
    14、(12分)暑假期间,商洛剧院举行专场音乐会,成人票每张20元,学生票每张5元,为了吸引广大师生来听音乐会,剧院制定了两种优惠方案:
    方案一:购买一张成人票赠送一张学生票;
    方案二:成人票和学生票都打九折.
    我校现有4名老师与若干名(不少于4人)学生听音乐会.
    (1)设学生人数为(人),付款总金额为(元),请分别确定两种优惠方案中与的函数关系式;
    (2)请你结合参加听音乐会的学生人数,计算说明怎样购票花费少?
    15、(8分)计算题:
    (1); (2).
    16、(8分)若变量z是变量y的函数,同时变量y是变量x的函数,那么我们把变量z叫做变量x的“迭代函数”.
    例如:z2y3,yx1,则z2x132x1,那么z2x1就是z与x之间的“迭代函数”解析式.
    (1)当2006x2020时,zy2,,请求出z与x之间的“迭代函数”的解析式及z的最小值;
    (2)若z2ya,yax24axba0,当1x3时,“迭代函数”z的取值范围为1z17,求a和b的值;
    (3)已知一次函数yax1经过点1,2,zay2b2ycb4(其中a、b、c均为常数),聪明的你们一定知道“迭代函数”z是x的二次函数,若x1、x2(x1x2)是“迭代函数”z3的两个根,点x3,2是“迭代函数”z的顶点,而且x1、x2、x3还是一个直角三角形的三条边长,请破解“迭代函数”z关于x的函数解析式.
    17、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
    (1)求k、b的值;
    (2)请直接写出不等式kx+b﹣3x>0的解集.
    (3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.
    18、(10分)如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.
    (1)求直线AB的函数表达式;
    (2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);
    (3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的方程-3有增根,则a=_____.
    20、(4分)一个三角形的三边分别是、1、,这个三角形的面积是_____.
    21、(4分)如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.
    22、(4分)已知点与点关于y轴对称,则__________.
    23、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
    (1)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
    (2)如果通道宽(米)的值能使关于的方程有两个相等的实数根,并要求修建的通道的宽度不少于5米且不超过12米,求出此时通道的宽.
    25、(10分)为了解上一次八年级数学测验成绩情况,随机抽取了40名学生的成绩进行统计分析,这40名学生的成绩数据如下:
    55 62 67 53 58 83 87 64 68 85
    60 94 81 98 51 83 78 77 66 71
    91 72 63 75 88 73 52 71 79 63
    74 67 78 61 97 76 72 77 79 71
    (1)将样本数据适当分组,制作频数分布表:
    (2)根据频数分布表,绘制频数直方图:
    (3)从图可以看出,这40名学生的成绩都分布在什么范围内?分数在哪个范围的人数最多?
    26、(12分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).
    (1)求m,n的值;
    (2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.
    (3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据分式值为0时,分子等于0,分母不等于0解答即可.
    【详解】
    当x=2时,A、B的分母为0,分式无意义,故A、B不符合题意;
    当x=2时,2x-4=0,x-90,故C符合题意;
    当x=2时,x+20,故D不符合题意.
    故选:C
    本题考查的是分式值为0的条件,易错点是在考虑分子等于0 的同时应考虑分母不等于0.
    2、A
    【解析】
    根据三角形中位线定理分别求出DE、EF、FG、DG,计算即可.
    【详解】
    解:∵BD、CE是△ABC的中线,
    ∴DE=BC=2,
    同理,FG=BC=2,EF=OA=1.5,DG=OA=1.5,
    ∴四边形DEFG的周长=DE+EF+FG+DG=7(cm),
    故选:A.
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    3、C
    【解析】
    随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.
    【详解】
    A. 抛出的篮球会落下是必然事件,故本选项错误;
    B. 从装有白球的袋里摸出红球,是不可能事件,故本选项错误;
    C.购买10张彩票,中一等奖是随机事件,故本选正确。
    D. 地球绕太阳公转,是必然事件,故本选项错误;
    故选:C.
    本题考查随机事件,熟练掌握随机事件的定义是解题关键.
    4、C
    【解析】
    先根据圆周角定理的推论得出∠ACB=90°,然后根据圆周角定理得到∠D=∠B,最后利用∠CAB=90°-∠B即可求解.
    【详解】
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵∠D=∠B=20°,
    ∴∠CAB=90°-∠B =90°﹣20°=70°.
    故选:C.
    本题主要考查圆周角定理及其推论,直角三角形两锐角互余,掌握圆周角定理及其推论是解题的关键.
    5、B
    【解析】
    先判断在2和3之间,然后再根据不等式的性质判断即可.
    【详解】
    解:,
    ∵2<<3,
    ∴7<10﹣<8,
    即的值在7和8之间.
    故选B.
    无理数的估算是本题的考点,判断出在2和3之间时解题的关键.
    6、A
    【解析】
    根据全等三角形的判定定理证明△ACD≌△CEB,进而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可
    【详解】
    过点B作BF⊥AD于点F,
    设砌墙砖块的厚度为xcm,则BE=2xcm,则AD=3xcm,
    ∵∠ACB=90,
    ∴∠ACD+∠ECB=90,
    ∵∠ECB+∠CBE=90,
    ∴∠ACD=∠CBE,
    在△ACD和△CEB中,

    ∴△ACD≌△CEB(AAS),
    ∴AD=CE,CD=BE,
    ∴DE=5x,AF=AD−BE=x,
    ∴在Rt△AFB中,
    AF2+BF2=AB2,
    ∴25x2+x2=12,
    解得,x=(负值舍去)
    故选A.
    本题考查的是勾股定理的应用以及全等三角形的判定与性质,得出AD=BE,DC=CF是解题关键.
    7、B
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    A、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;
    B、∵12+()2=22,∴能构成直角三角形,故本选项正确;
    C、∵22+()2≠42,∴不能构成直角三角形,故本选项错误;
    D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.
    故选B.
    本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    8、C
    【解析】
    先由矩形的性质折叠的性质得出∠AFE=∠D=90°,从而得出∠CFE=60°,在利用直角三角形的性质即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,
    由折叠得,∠AFE=∠D=90°,
    ∴∠BFA+∠CFE=90°,
    ∴∠CFE=90°-∠BFA=60°,
    ∵∠C=90°,
    ∴∠CEF=90°-∠CFE=30°,
    故选C.
    此题主要考查了矩形的性质,折叠的性质,直角三角形的性质,解本题的关键是求出∠CFE.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥1
    【解析】
    分析:根据二次根式有意义的条件可得x+1≥0,x-1≥0,求出x的范围.
    详解:由题意得,x+1≥0,x-1≥0,
    解得:x≥-1,x≥1,
    综上所述:x≥1.
    故答案为:x≥1.
    点睛:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式有意义的条件.
    10、-3
    【解析】
    首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.
    【详解】
    过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,
    设PN=x,PM=y,
    由已知条件,得
    EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)
    ∴OA=OB=5
    ∴∠OAB=∠OBA=45°
    ∴FF′=AF′=y,EE′=BE′=x,
    ∴AF=,BE=
    又∵


    又∵反比例函数在第二象限,
    ∴.
    此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.
    11、11
    【解析】
    首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
    【详解】
    解:如图,过A作AE∥DC交BC与E,
    ∵AD∥BC,
    ∴四边形AECD是平行四边形,
    ∴AD=EC=5,AE=CD,
    ∵AB=CD=6,
    ∴AE=AB=6,
    ∵∠B=60°,
    ∴△ABE是等边三角形,
    ∴BE=AB=6,
    ∴BC=6+5=11,
    故答案为11.
    此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
    12、
    【解析】
    直接提取公因式a即可得答案.
    【详解】
    3a2+a=a(3a+1),
    故答案为:a(3a+1)
    本题考查提取公因式法分解因式,正确找出公因式是解题关键.
    13、2
    【解析】
    由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
    【详解】
    ∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
    ∴DF为三角形ABC的中位线,
    ∴DE∥BC,DF=BC,
    又∠ADF=90°,
    ∴∠C=∠ADF=90°,
    又BE⊥DE,DE⊥AC,
    ∴∠CDE=∠E=90°,
    ∴四边形BCDE为矩形,
    ∵BC=2,∴DF= BC=1,
    在Rt△ADF中,∠A=30°,DF=1,
    ∴tan30°= ,即AD= ,
    ∴CD=AD=,
    则矩形BCDE的面积S=CD⋅BC=2.
    故答案为2
    此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2)①当购买24张票时,两种方案付款一样多,②时,,方案①付款较少,③当时,,方案②付款较少.
    【解析】
    (1)首先根据方案①:付款总金额=购买成人票金额+除去4人后的学生票金额;
    方案②:付款总金额=(购买成人票金额+购买学生票金额)打折率,列出关于的函数关系式;
    (2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数,再分三种情况讨论.
    【详解】
    (1)按方案①可得:
    按方案②可得:
    (2)因为,
    ①当时,得,解得,
    ∴当购买24张票时,两种方案付款一样多.
    ②当时,得,解得,
    ∴时,,方案①付款较少.
    ③当时,得,解得,
    当时,,方案②付款较少.
    本题根据实际问题考查了一次函数的应用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点的取值,再进一步讨论.
    15、 (1) ;(2) 1.
    【解析】
    分析:(1)先把各二次根式化为最简二次根式,然后合并即可;
    (2)利用平方差公式计算.
    详解:(1)原式=3-2 =;
    (2)原式=3-(5-3)=1.
    点睛:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.
    16、(1)z= -x+6;-1004;(2)或;(3)
    【解析】
    (1)把代入zy2中化简即可得出答案;
    (2)把yax24axba0代入z2ya整理得z=2a(x-2) 2-7a+2b,再分两种情况讨论,分别得方程组和,求解即可得;
    (3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再将y=x+1代入z=ay2+(b-2)y+c-b+4得,根据点x3,2是“迭代函数”z的顶点得出,再根据当z=3时, 解得,又x1、x2、x3是一个直角三角形的三条边长得,代入解得b=-8,c=15,从而得解。
    【详解】
    解:(1)把代入zy2中得:
    z()2= -x+6
    ∵-<0,
    ∴z随着x的增大而减小,
    ∵2006 x2020 ,
    ∴当x=2020时,z有最小值,最小值为z= -×2020+6=-1004
    故答案为:z= -x+6;-1004
    (2)把yax24axba0代入z2ya,得
    z2(ax24axb)a
    =2ax28axba,
    =2a(x-2) 2-7a+2b
    这是一个二次函数,图象的对称轴是直线x=2,
    当a>0时,由函数图象的性质可得x=-1时,z=17;x=3时,z=-1;

    解得
    当a<0时,由函数图象的性质可得x=-1时,z=-1;x=3时,z=17;

    解得
    综上,或
    (3)把(1,2)代入y=ax+1得a+1=2
    解得a=1
    ∴y=x+1
    把y=x+1代入z=ay2+(b-2)y+c-b+4并整理得
    ∵点x3,2是“迭代函数”z的顶点,
    整理得
    当z=3时,
    解得
    又∵x1x2
    ∴x1 x3x2
    又∵x1、x2、x3还是一个直角三角形的三条边长


    解得

    把代入
    解得c=15

    故答案为:
    本题考查了二次函数和“迭代函数”,理解“迭代函数”的概念和函数的性质是解题的关键。
    17、(1)k=-1,b=4;(2)x<1;(3)点D的坐标为D(0,﹣4)或D(0,12).
    【解析】
    (1)用待定系数法求解;(2)kx+b>3x,结合图象求解;(3)先求点B的坐标为(4,0).设点D的坐标为(0,m),直线DB:y=-,过点C作CE∥y轴,交BD于点E,则E(1,),可得CE,S△BCD=S△CED+S△CEB== |3﹣ |×4=2|3﹣,由S△BCD=2S△BOC可求解.
    【详解】
    解:(1)当x=1时,y=3x=3,
    ∴点C的坐标为(1,3).
    将A(﹣2,6)、C(1,3)代入y=kx+b,
    得:
    解得:;
    (2)由kx+b﹣3x>0,得
    kx+b>3x,
    ∵点C的横坐标为1,
    ∴x<1;
    (3)由(1)直线AB:y=﹣x+4
    当y=0时,有﹣x+4=0,
    解得:x=4,
    ∴点B的坐标为(4,0).
    设点D的坐标为(0,m),
    ∴直线DB:y=-,
    过点C作CE∥y轴,交BD于点E,则E(1,),
    ∴CE=|3﹣ |
    ∴S△BCD=S△CED+S△CEB== |3﹣ |×4=2|3﹣ |.
    ∵S△BCD=2S△BOC,即2|3﹣ |=×4×3×2,
    解得:m=﹣4或12,
    ∴点D的坐标为D(0,﹣4)或D(0,12).
    考核知识点:一次函数的综合运用.数形结合分析问题是关键.
    18、(1)y=x+1;(2);(2)(2,4)或(﹣2,2)或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;
    (2)求出点E坐标,分两种情形分别讨论求解即可;
    【详解】
    (1)∵A(﹣2,0),OA=2OB,
    ∴OA=2,OB=1,
    ∴B(0,1),
    设直线AB的解析式为y=kx+b,则有
    解得
    ∴直线AB的解析式为y=x+1.
    (2)∵BC=AB,A(﹣2,0),B(0,1),
    ∴C(2,2),
    设直线DE的解析式为y=k′x+b′,则有
    解得
    ∴直线DE的解析式为
    令y=0,得到

    (2)如图1中,作CF⊥OD于F.
    ∵CE:CD=1:2,CF∥OE,

    ∵CF=2,
    ∴OE=2.
    ∴m=2.
    ∴E(0,2),D(6,0),
    ①当EC为菱形ECFG的边时,F(4,2),G(2,4)或F′(0,1),G′(﹣2,2).
    ②当EC为菱形EF″CG″的对角线时,F″G″垂直平分线段EC,易知直线DE的解析式为,直线G″F″的解析式为
    由,解得
    ∴F″,
    设G″(a,b),则有

    ∴G″
    本题考查一次函数综合题、平行线分线段成比例定理、菱形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    去分母后把x=2代入,即可求出a的值.
    【详解】
    两边都乘以x-2,得
    a=x-1,
    ∵方程有增根,
    ∴x-2=0,
    ∴x=2,
    ∴a=2-1=1.
    故答案为:1.
    本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
    20、
    【解析】
    首先根据勾股定理逆定理可判定此三角形是直角三角形,然后再计算面积即可.
    【详解】
    解:∵()2+12=3=()2,
    ∴这个三角形是直角三角形,
    ∴面积为:×1×=,
    故答案为:.
    考查了二次根式的应用以及勾股定理逆定理,关键是正确判断出三角形的形状.
    21、3.1
    【解析】
    根据折叠的特点得到,,可设,在Rt△AGE中,利用得到方程即可求出x.
    【详解】
    解∵折叠,
    ∴,.设,
    ∴.在中,,
    ∴,
    解得.
    故答案为:3.1.
    此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.
    22、-1
    【解析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加即可得解.
    【详解】
    ∵点P(a,−4)与点Q(−3,b)关于y轴对称,
    ∴a=3,b=−4,
    ∴a+b=3+(−4)=−1.
    故答案为:−1.
    考查关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.
    23、乙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
    ∴S甲2>S乙2,
    ∴成绩比较稳定的是乙;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    二、解答题(本大题共3个小题,共30分)
    24、(1)5米;(2)1米;
    【解析】
    (1)先用含a的式子先表示出花圃的长和宽后利用矩形面积公式,再根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;
    (2)根据方程有两个相等的实数根求得a的值,即可解答;
    【详解】
    (1)由图可知,花圃的面积为(10-2a)(60-2a)
    由已知可列式:10×60-(10-2a)(60-2a)=×10×60,
    解得:a1=5,a2=75(舍去),所以通道的宽为5米;
    (2)∵方程x2-ax+25a-150=0有两个相等的实根,
    ∴△=a2-25a+150=0,解得:a1=1,a2=15,
    ∵5≤a≤12,
    ∴a=1.
    ∴通道的宽为1米.
    此题考查一元二次方程的应用,解题的关键是表示出花圃的长和宽,属于中档题,难度不算大.
    25、答案见解析
    【解析】
    试题分析:(1)根据题意制作频数分布表即可;
    (2)根据题意绘制频数直方图即可;
    (3)根据题意即可得到结论.
    试题解析:
    (1)将样本数据适当分组,制作频数分布表:
    故答案为:[50,59],[60,69],[70,79],[80,89],[90,100],5,10,15,6,4;
    (2)根据频数分布表,绘制频数直方图:
    (3)从图可以看出,这40名学生的成绩都分布在50∽100分范围内,分数在70﹣80之间的人数最多.
    26、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.
    【解析】
    (1)直接把已知点代入函数关系式进而得出m,n的值;
    (2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;
    (3)分别得出AO,BO的长,进而得出四边形PAOB的面积.
    【详解】
    (1)把P(1,2)代入y=x+n﹣2得:
    1+n﹣2=2,
    解得:n=3;
    把P(1,2)代入y=mx+3得:
    m+3=2,
    解得m=﹣1;
    (2)不等式mx+n>x+n﹣2的解集为:x<1;
    (3)当x=0时,y=x+1=1,
    故OA=1,
    当y=0时,y=﹣x+3,
    解得:x=3,
    则OB=3,
    四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.
    此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.
    题号





    总分
    得分
    批阅人
    分 组





    频 数





    分 组
    [50,59]
    [60,69]
    [70,79]
    [80,89]
    [90,100]
    频 数
    5
    10
    15
    6
    4
    相关试卷

    四川省广汉中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份四川省广汉中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省广安市华蓥市第一中学2024年数学九上开学质量检测模拟试题【含答案】: 这是一份四川省广安市华蓥市第一中学2024年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map