终身会员
搜索
    上传资料 赚现金

    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】

    立即下载
    加入资料篮
    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】第1页
    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】第2页
    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )
    A.B.
    C.D.
    2、(4分)若五箱苹果的质量(单位:)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是( )
    A.18和18B.19和18C.20和18D.20和19
    3、(4分)下列二次根式中与是同类二次根式的是( )
    A.B.C.D.
    4、(4分)若一组数据的方差是3,则的方差是( )
    A.3B.6C.9D.12
    5、(4分)如图,在△ABC 中, AB 的垂直平分线交 BC 于 D,AC 的中垂线交 BC 于 E,∠BAC=112°,则∠DAE 的度数为( )
    A.68°B.56°C.44°D.24°
    6、(4分)如图,在平面直角坐标系中,,,,…都是等腰直角三角形,其直角顶点,,,…均在直线上.设,,,…的面积分别为,,,…,根据图形所反映的规律,( )
    A.B.C.D.
    7、(4分)某正比例函数的图象如图所示,则此正比例函数的表达式为()
    A.y=xB.y=xC.y=-2xD.y=2x
    8、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.
    10、(4分)一组数据:的方差是__________.
    11、(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.
    12、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____; ②_____.
    13、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是环,方差分别是,,,在这三名射击手中成绩最稳定的是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.
    提出问题:当点运动时,的度数是否发生改变?
    探究问题:
    (1)首先考察点的两个特殊位置:
    ①当点与点重合时,如图1所示,____________
    ②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)
    (2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)
    (3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.
    15、(8分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”,如图为点、的“极好菱形”的一个示意图.

    (1)点,,中,能够成为点、的“极好菱形”的顶点的是_______.
    (2)若点、的“极好菱形”为正方形,则这个正方形另外两个顶点的坐标是________.
    (3)如果四边形是点、的“极好菱形”
    ①当点的坐标为时,求四边形的面积
    ②当四边形的面积为,且与直线有公共点时,直接写出的取值范围.
    16、(8分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.
    (1)求中巴车和大客车各有多少个座位?
    (2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?
    17、(10分)一次函数CD:与一次函数AB:,都经过点B(-1,4).
    (1)求两条直线的解析式;
    (2)求四边形ABDO的面积.
    18、(10分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.
    (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .
    (2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;
    (3)求△AEF周长的最小值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分).若2m= 3n,那么m︰n= .
    20、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
    21、(4分)若最简二次根式与是同类二次根式,则=_______.
    22、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
    23、(4分)分解因式:________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;
    25、(10分)受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为2.88亿元.
    (1)求该企业从2017年到2019年年利润的平均增长率?
    (2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?
    26、(12分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据注水的容器可知最底层h上升较慢,中间层加快,最上一层更快,即可判断.
    【详解】
    ∵匀速地向如图的容器内注水,
    由注水的容器可知最底层底面积大,h上升较慢,中间层底面积较小,高度h上升加快,最上一层底面积最小,h上升速度最快,故选C.
    此题主要考查函数图像的识别,解题的关键是根据题意找到对应的函数图像.
    2、B
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.
    故选:B.
    本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.
    3、B
    【解析】
    先将各选项化简,再根据同类二次根式的定义解答.
    【详解】
    A、,与被开方数不相同,故不是同类二次根式,选项错误;
    B、,与被开方数相同,故是同类二次根式,选项正确;
    C、,与被开方数不同,故不是同类二次根式,选项错误;
    D、是整数,不是二次根式,故选项错误.
    所以B选项是正确的.
    本题主要考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.
    4、D
    【解析】
    先根据的方差是3,求出数据的方差,进而得出答案.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的方差是3,
    ∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;
    ∴数据的方差是12;
    故选:D.
    本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.
    5、C
    【解析】
    根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.
    【详解】
    解:∠B+∠C=180°-∠BAC=68°,
    ∵AB的垂直平分线交BC于D,
    ∴DA=DB,
    ∴∠DAB=∠B,
    ∵AC的中垂线交BC于E,
    ∴EA=EC,
    ∴∠EAC=∠C,
    ∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
    故选:C.
    本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    6、A
    【解析】
    分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.
    【详解】
    解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,
    ∵P1(3,3),且△P1OA1是等腰直角三角形,
    ∴OC=CA1=P1C=3,
    设A1D=a,则P2D=a,
    ∴OD=6+a,
    ∴点P2坐标为(6+a,a),
    将点P2坐标代入,得:,
    解得:
    ∴A1A2=2a=3,,
    同理求得,
    故选:A
    本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.
    7、A
    【解析】
    本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.
    【详解】
    解:正比例函数的图象过点M(−2,1),
    ∴将点(−2,1)代入y=kx,得:
    1=−2k,
    ∴k=﹣,
    ∴y=﹣x,
    故选A.
    本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.
    8、B
    【解析】
    ∵-20,+10,
    ∴点P (-2,+1)在第二象限,
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、从中抽取的名中学生的视力情况
    【解析】
    根据从总体中取出的一部分个体叫做这个总体的一个样本解答即可.
    【详解】
    解:这个问题中的样本是从中抽取的1000名中学生的视力情况,
    故答案为从中抽取的1000名中学生的视力情况.
    本题考查的是样本的概念,掌握从总体中取出的一部分个体叫做这个总体的一个样本是解题的关键.
    10、.
    【解析】
    根据方差的公式进行解答即可.
    【详解】
    解:==2019,
    ==0.
    故答案为:0.
    本题考查了方差的计算.
    11、1
    【解析】
    试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.
    5÷1%=50(人),
    50×30%=15(人),
    50﹣5﹣15﹣20=1(人).
    故答案为1.
    考点:条形统计图;扇形统计图.
    12、3,4,5 6,8,10
    【解析】
    根据勾股数的定义即可得出答案.
    【详解】
    ∵3、4、5是三个正整数,
    且满足,
    ∴3、4、5是一组勾股数;
    同理,6、8、10也是一组勾股数.
    故答案为:①3,4,5;②6,8,10.
    本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    13、乙
    【解析】
    根据方差的意义,结合三人的方差进行判断即可得答案.
    【详解】
    解:∵甲、乙、丙三名射击手进行20次测试,平均成绩都是9.3环,方差分别是3.5,0.2,1.8,
    3.5>1.8>0.2,
    ∴在这三名射击手中成绩最稳定的是乙,
    故答案为乙.
    本题考查了方差的意义,利用方差越小成绩越稳定得出是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①45;②不变化;(2)成立;(3)详见解析.
    【解析】
    (1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;
    (2)画出图形即可判断,结论仍然成立;
    (3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证 得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.
    【详解】
    解(1)①当点P与点B重合时,如图1-1所示:
    ∵四边形ABCD是正方形,
    ∴∠APE=45°
    ②当BP=BC时,如图1-2所示,①中的结论不发生变化;
    故答案为:45°,不变化.
    (2) (2)如图2-1,如图2-2中,结论仍然成立;
    故答案为:成立;
    (3)证明一:如图所示.
    过点作于点,于点.
    ∵点在的垂直平分线上,
    ∴.
    ∵四边形为正方形,
    ∴平分.
    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    证明二:如图所示.
    过点作于点,延长交于点,连接.
    ∵点在的垂直平分线上,
    ∴.
    ∵四边形为正方形,
    ∴,
    ∴.
    ∴,.
    ∴.
    又∵,
    ∴.
    又∵,
    ∴.
    ∴.
    本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点
    15、 (1) ,;
    (1) (1,3)、(3,1);
    (3)①1;②-2≤b≤2.
    【解析】
    (1)如图1中,观察图象可知:F、G能够成为点M,P的“极好菱形”顶点;
    (1)先求得对角线PM的长,从而可得到正方形的边长,然后可得到这个正方形另外两个顶点的坐标;
    (3)①,先依据题意画出图形,然后可证明该四边形为正方形,从而可求得它的面积;②根据菱形的性质得:PM⊥QN,且对角线互相平分,由菱形的面积为8,且菱形的面积等于两条对角线积的一半,可得QN的长,证明Q在y轴上,N在x轴上,可得结论.
    【详解】
    解:(1)如图1中,观察图象可知:F、G能够成为点M,P的“极好菱形”顶点.
    故答案为F,G;
    (1)如图1所示:
    ∵点M的坐标为(1,1),点P的坐标为(3,3),
    ∴MP=1.
    ∵“极好菱形”为正方形,其对角线长为1,
    ∴其边长为1.
    ∴这个正方形另外两个顶点的坐标为(1,3)、(3,1).
    (3)①如图1所示:
    ∵M(1,1),P(3,3),N(3,1),
    ∴MN=1,PN⊥MN.
    ∵四边形MNPQ是菱形,
    ∴四边形MNPQ是正方形.
    ∴S四边形MNPQ=2..
    ②如图3所示:
    ∵点M的坐标为(1,1),点P的坐标为(3,3),
    ∴PM=1,
    ∵四边形MNPQ的面积为8,
    ∴S四边形MNPQ=PM•QN=8,即
    ×1×QN=8,
    ∴QN=2,
    ∵四边形MNPQ是菱形,
    ∴QN⊥MP,ME=,EN=1,
    作直线QN,交x轴于A,
    ∵M(1,1),
    ∴OM=,
    ∴OE=1,
    ∵M和P在直线y=x上,
    ∴∠MOA=25°,
    ∴△EOA是等腰直角三角形,
    ∴EA=1,
    ∴A与N重合,即N在x轴上,
    同理可知:Q在y轴上,且ON=OQ=2,
    由题意得:四边形MNPQ与直线y=x+b有公共点时,b的取值范围是-2≤b≤2.
    本题是二次函数的综合题,考查了菱形的性质、正方形的判定、点M,P的“极好菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题.
    16、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
    【解析】
    试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.
    (1)在保证学生都有座位的前提下,有三种租车方案:
    ①单独租用中巴车,需要租车辆,可以计算费用.
    ②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.
    ③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.
    解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有
    解之得:x1=45,x1=﹣90(不合题意,舍去).
    经检验x=45是分式方程的解,
    故大客车有座位:x+15=45+15=60个.
    答:每辆中巴车有座位45个,每辆大客车有座位60个.
    (1)解法一:
    ①若单独租用中巴车,租车费用为×350=1100(元)
    ②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)
    ③设租用中巴车y辆,大客车(y+1)辆,则有
    45y+60(y+1)≥170
    解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求
    这时租车费用为350×1+400×3=1900(元)
    故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
    解法二:①、②同解法一
    ③设租用中巴车y辆,大客车(y+1)辆,则有
    350y+400(y+1)<1000
    解得:.
    由y为整数,得到y=1或y=1.
    当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;
    当y=1时,运送人数为45×1+60×3=170,符合要求.
    故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
    考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.
    17、(1)直线CD的解析式为:;直线AB的解析式为:;
    (2)四边形ABDO的面积为7.5.
    【解析】
    (1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.
    (2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.
    【详解】
    解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),
    ∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:
    解得: ;
    ∴直线CD的解析式为:;直线AB的解析式为:;
    (2)∵点A为直线AB与x轴的交点,令y=0得:解得:,
    ∴A(﹣3,0);
    ∵C为直线CD与x轴的交点,令y=0得:解得:,
    ∴C(3,0);
    ∵D为直线CD与y轴的交点,令x=0得y=3
    ∴D(0,3);
    ∴AC=6,OC=3,OD=3;
    由图可知;
    ∴四边形ABDO的面积为7.5.
    本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.
    18、(1)AE=EF=AF;(2)详见解析;(3)6.
    【解析】
    (1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;
    (2)欲证明BE=CF,只要证明△BAE≌△CAF即可;
    (3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;
    【详解】
    (1)AE=EF=AF.
    理由:如图1中,连接AC,
    ∵四边形ABCD是菱形,∠B=60°,
    ∴AB=BC=CD=AD,∠B=∠D=60°,
    ∴△ABC,△ADC是等边三角形,
    ∴∠BAC=∠DAC=60°
    ∵BE=EC,
    ∴∠BAE=∠CAE=30°,AE⊥BC,
    ∵∠EAF=60°,
    ∴∠CAF=∠DAF=30°,
    ∴AF⊥CD,
    ∴AE=AF(菱形的高相等)
    ∴△AEF是等边三角形,
    ∴AE=EF=AF.
    故答案为AE=EF=AF;
    (2)证明:如图2,
    ∵∠BAC=∠EAF=60°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,
    ∴△BAE≌△CAF(ASA)
    ∴BE=CF.
    (3)由(1)可知△AEF是等边三角形,
    ∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,
    ∵AE=EF=AF=2,
    ∴△AEF的周长为6.
    本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3︰2
    【解析】
    根据比例的性质将式子变形即可.
    【详解】


    故答案为: 3︰2
    点睛:此题考查比例的知识
    20、1.2
    【解析】
    根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
    【详解】
    ∵在△ABC中,AB=3,AC=4,BC=5,
    ∴AB2+AC2=BC2,
    即∠BAC=90°.
    又PE⊥AB于E,PF⊥AC于F,
    ∴四边形AEPF是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=EF=AP.
    因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
    ∴AM的最小值是1.2.
    本题考查了勾股定理, 矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.
    21、4
    【解析】
    根据同类二次根式的定义,被开方数相等,由此可得出关于x的方程,进而可求出x的值.
    【详解】
    解:由题意可得:

    解:
    当时,与都是最简二次根式
    故答案为:4.
    本题考查了同类二次根式与最简二次根式的定义,掌握定义是解题的关键.
    22、(﹣4,3).
    【解析】
    求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
    【详解】
    解:∵点E(﹣8,0)在直线y=kx+6上,
    ∴﹣8k+6=0,
    ∴k=,
    ∴y=x+6,
    ∴P(x, x+6),
    由题意:×6×(x+6)=1,
    ∴x=﹣4,
    ∴P(﹣4,3),
    故答案为(﹣4,3).
    本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
    23、 (a+1)(a-1)
    【解析】
    根据平方差公式分解即可.
    【详解】
    (a+1)(a-1).
    故答案为:(a+1)(a-1).
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.
    【详解】
    ∵MN是BD的垂直平分线,
    ∴OB=OD,∠BON=∠DOM,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠OBN=∠ODM
    在△BON和△DOM中,

    ∴△BON≌△DOM(ASA),
    ∴BN=MD,
    ∴四边形BMDN是平行四边形,
    ∵MN是BD的垂直平分线,
    ∴MB=MD,
    ∴平行四边形BMDN是菱形.
    本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.
    25、(1)这两年该企业年利润平均增长率为20%;(2)该企业2020年的利润不能超过3.5亿元.
    【解析】
    (1)设年利润平均增长率为x,根据“2017年的利润为2亿元,2019年的利润为2.88亿元”,列出关于x的一元二次方程,解之,根据实际情况,即可得到答案,
    (2)结合(1)的结果,列式计算,求出2020年的利润,即可得到答案.
    【详解】
    (1)设年利润平均增长率为x,得:
    2(1+x)2=2.88,
    解得 x1 =0.2,x2 =-2.2 (舍去),
    答:这两年该企业年利润平均增长率为20%;
    (2)2.88(1+20%)=3.456,
    3.456<3.5,
    答:该企业2020年的利润不能超过3.5亿元.
    本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.
    26、证明见解析.
    【解析】
    根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.
    【详解】
    ∵BE∥AC,CE∥DB,
    ∴四边形OBEC是平行四边形,
    又∵四边形ABCD是菱形,且AC、BD是对角线,
    ∴AC⊥BD,
    ∴∠BOC=90°,
    ∴平行四边形OBEC是矩形.
    本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京师范大学附属中学数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年北京师范大学附属中学数学九上开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map