四川省广汉中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题是真命题的是( )
A.相等的角是对顶角
B.两直线被第三条直线所截,内错角相等
C.若,则
D.有一角对应相等的两个菱形相似
2、(4分)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )
A.30B.36C.54D.72
3、(4分)下列各式从左到右,是因式分解的是( ).
A.(y-1)(y+1)=-1B.
C.(x-2)(x-3)=(3-x)(2-x)D.
4、(4分)如图,在所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点、、,再连接、、得到,则下列说法不正确的是( )
A.与是位似图形
B.与是相似图形
C.与的周长比为2:1
D.与的面积比为2:1
5、(4分)如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是( )
A.1B.2C.3D.4
6、(4分)下列函数中,一定是一次函数的是
A.B.C.D.
7、(4分)一个三角形的三个内角之比是1∶2∶3,且最小边长度是8,则最长边的长度是( )
A.10B.12C.16D.24
8、(4分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是( )
A.7<x≤11B.7≤x<11
C.7<x<11D.7≤x≤11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
10、(4分)已知y=++9,则(xy-64)2的平方根为______.
11、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
12、(4分)如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.
13、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)当EG=EH时,连接AF
①求证:AF=FC;
②若DC=8,AD=4,求AE的长.
15、(8分)计算: (1)计算:- (2)化简: (x>0)
16、(8分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:
(1)直接写出四名候选人面试成绩中位数;
(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.
17、(10分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
(1)求OB的长度;
(2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
(3)若OCQ是等腰三角形,求CQ的长度.
18、(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
20、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
21、(4分)已知直角三角形的两边长分别为3、1.则第三边长为________.
22、(4分)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.
23、(4分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.
25、(10分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
26、(12分)如图,在 ABC ,C 90,AC<BC,D 为 BC 上一点,且到 A、B 两点的距离相等.
(1)用直尺和圆规,作出点 D 的位置(不写作法,保留作图痕迹);
(2)连结 AD,若 B 36 ,求∠CAD 的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A错误,对顶角相等,但相等的角不一定是对顶角.
B错误,两直线平行时,内错角相等.
C错误,当m和n互为相反数时,,但m≠n.
故选D
2、D
【解析】
求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.
【详解】
作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,
∴DE=AM=9,ME=AD=10,
又由题意可得,BM=BC=AD=5,
则BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,
∴△BDE是直角三角形,且∠BDE=90°,
过D作DF⊥BE于F,
则DF=,
∴S▱ABCD=BC•FD=10×=1.
故选D.
此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.
3、D
【解析】
解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.
4、D
【解析】
根据三角形中位线定理得到A1B1=AB,A1C1=AC,B1C1=BC,根据位似变换的概念、相似三角形的性质判断即可.
【详解】
∵点A1、B1、C1分别是OA、OB、OC的中点,
∴A1B1=AB,A1C1=AC,B1C1=BC,
∴△ABC与△A1B1C1是位似图形,A正确;
△ABC与是△A1B1C1相似图形,B正确;
△ABC与△A1B1C1的周长比为2:1,C正确;
△ABC与△A1B1C1的面积比为4:1,D错误;
故选:D.
考查的是位似变换,掌握位似变换的概念、相似三角形的性质是解题的关键.
5、D
【解析】
分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.
详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.
第一幅图:∵S3=c2,S1=a2,S2=b2
∴S1+S2= (a2+b2)=c2=S3;
第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,
则S1+S2=+== S3;
第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,
则S3+S2=(a2+b2)=c2=S1.
第四幅图:因为三个四边形都是正方形则:
∴S3=BC2=c2,S2= AC2=b2,,S1=AB2=a2,
∴S3+S2=a2+b2=c2=S1.
故选:D.
点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.
6、A
【解析】
根据一次函数的定义,逐一分析四个选项,此题得解.
【详解】
解:、,
是一次函数,符合题意;
、自变量的次数为,
不是一次函数,不符合题意;
、自变量的次数为2,
不是一次函数,不符合题意;
、当时,函数为常数函数,不是一次函数,不符合题意.
故选:.
本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.
7、C
【解析】
根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.
【详解】
设一份是x,则三个角分别是x,2x,3x.
再根据三角形的内角和定理,得:
x+2x+3x=180,
解得:x=30,则2x=60,3x=90.
故此三角形是有一个30角的直角三角形.
根据30的角所对的直角边是斜边的一半,得,最长边的长度是1.
故选C.
此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.
8、A
【解析】
根据运算程序,前两次运算结果小于等于35,第三次运算结果大于35列出不等式组,然后求解即可.
【详解】
依题意,得:,
解得7<x≤1.
故选A.
本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
【详解】
∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
∴DF为三角形ABC的中位线,
∴DE∥BC,DF=BC,
又∠ADF=90°,
∴∠C=∠ADF=90°,
又BE⊥DE,DE⊥AC,
∴∠CDE=∠E=90°,
∴四边形BCDE为矩形,
∵BC=2,∴DF= BC=1,
在Rt△ADF中,∠A=30°,DF=1,
∴tan30°= ,即AD= ,
∴CD=AD=,
则矩形BCDE的面积S=CD⋅BC=2.
故答案为2
此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
10、±1
【解析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
【详解】
解:由题意得:,
解得:x=7,
则y=9,
(xy-64)2=1,
1的平方根为±1,
故答案为:±1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
11、7
【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
考点:二次函数的最值.
12、x<1
【解析】
由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.
【详解】
由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,
∵一次函数y=kx+b的图象与y轴交于点(1,1),
∴当x<1时,有kx+b﹣1>1.
故答案为x<1
本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.
13、.
【解析】
一次函数的图象有两种情况:
①当时,函数的值随x的值增大而增大;
②当时,函数的值随x的值增大而减小.
由题意得,函数的y随x的增大而增大,.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)①见解析,②1.
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,∠FCH=∠EAG
∴△AEG≌△CFH(SAS),
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)①如图,连接AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键
15、(1);(2).
【解析】
(1)先化简二次根式,然后再进行合并即可;
(2)先分别化简分子、分母中的二次根式,然后再进行分母有理化即可.
【详解】
(1)原式=2-
=;
(2)原式=
=
=.
本题考查了二次根式的混合运算,熟练掌握相关的运算法则以及分母有理化的方法是解题的关键.
16、(1)89分;(2)86;(3)甲的综合成绩: 89.4分,乙的综合成绩: 86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
【解析】
(1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
(2)根据加权平均数的计算方法,列方程求解即可,
(3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.
【详解】
解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
答:四名候选人的面试成绩的中位数是89分;
(2)由题意得:70%x+90×30%=87.2,
解得:x=86,
答:表格中x的值为86;
(3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
丁的综合成绩为:88×70%+86×30%=87.4分,
处在综合成绩前两位的是:甲、丁.
∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
本题考查中位数、加权平均数的计算方法,掌握中位数的概念、加权平均数的计算公式是解题的关键.
17、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.
【解析】
(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;
(2)延长QO交AD于点E,连接PE、PQ ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;
(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.
【详解】
(1)∵四边形ABCD是长方形,
∴∠ABC=90°,
∴,
∴OB=OA=OC=;
(2)延长QO交AD于点E,连接PE、PQ ,
∵四边形ABCD是长方形,
∴CD=AB=6,AD=BC=8,AD//BC,
∴∠AEO=∠CQO,
在△COQ和△AOE中,
,
∴△AEO≌△CQO(SAS),
∴OE=OQ,AE=CQ=y,
∴ED=AD-AE=8-y,
∵OP⊥OQ,
∴OP垂直平分EQ,
∴PE=PQ,
∴,
∵PD=x,
∴CP=CD-CP=6-x,
在Rt⊿EDP中,,
在Rt⊿PCQ中,,
∴,
∴;
(3)分三种情况考虑:
①如图,若CQ=CO时,此时CQ=CO=5;
②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,
∵OB=OC,OF⊥BC,
∴BF=CF=BC=4,
∴,
∵OQ=CQ,
∴,
∴,
∴,
∴ ;
③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,
综上所示,当或时,⊿OCQ是等腰三角形.
本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.
18、(1) ③④;(2)详见解析
【解析】
(1)根据“对角线垂直四边形"的定义求解;
(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;
【详解】
(1) 菱形和正方形是“对角线垂直四边形,故③④满足题意.
(2)证明:∵点分别是边、、、的中点,
∴,且;,且;.
∴.
∴四边形是平行四边形.
∵,
∴,
又∵,
∴.
∴.
∴是矩形.
本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1≤y≤1
【解析】
将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
【详解】
∵一次函数的图象与x轴交点的横坐标为,
∴这个交点的坐标为(6,0),
把(6,0)代入中得:
,
,
∵<0,y随x的增大而减小,
当时,=1.
当时,.
则.
故答案是:.
本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
20、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
21、4或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
②长为3、3的边都是直角边时:第三边的长为:;
∴第三边的长为:或4.
考点:3.勾股定理;4.分类思想的应用.
22、①②⑤
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.⑤正确.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故答案为:①②⑤.
此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
23、84°.
【解析】
根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】
解:∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠CAD=∠DAB=32°,
∴∠C=180°−32°×3=84°,
故答案为84°.
本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)8
【解析】
分析:
(1)连接BD交AC于点O,则由已知易得BD⊥AC,OD=OB=OA=OC,结合AE=CF可得OE=OF,由此可得四边形BEDF是平行四边形,再结合BD⊥EF即可得到四边形BEDF是菱形;
(2)由正方形ABCD的边长为4易得AC=BD=,结合AE=CF=,可得EF=,再由菱形的面积等于两对角线乘积的一半即可求得菱形BEDF的面积了.
详解:
(1)连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC.
∵AE=CF,
∴OA-AE=OC-CF,即OE=OF,
∴四边形BEDF为平行四边形,
又∵BD⊥EF,
∴四边形BEDF为菱形.
(2)∵正方形ABCD的边长为4,
∴BD=AC=.
∵AE=CF=,
∴EF=AC-=,
∴S菱形BEDF=BD·EF=×.
点睛:这是一道考查“正方形的性质、菱形的判定和菱形面积计算的问题”,熟悉“正方形的性质、菱形的判定方法和菱形的面积等于其对角线乘积的一半”是解答本题的关键.
25、画图见解析.
【解析】
【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
(2)结合网格特点以及中心对称图形的定义按要求作图即可得.
【详解】(1)如图所示(答案不唯一);
(2)如图所示(答案不唯一).
【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
26、 (1)作图见解析;(2)18°
【解析】
分析:(1)根据“到A,B两点的距离相等”可知点D在线段AB的中垂线上,据此作AB中垂线与BC交点可得;
(2)先根据直角三角形的性质得∠CAB=54°,再由DA=DB知∠B=∠DAB=36°,从而根据∠CAD=∠CAB﹣∠DAB可得答案.
详解:(1)如图所示,点D即为所求;
(2)在△ABC中,∵∠C=90°,∠B=36°,∴∠CAB=54°,由(1)知DA=DB,∴∠B=∠DAB=36°,则∠CAD=∠CAB﹣∠DAB=18°.
点睛:本题主要考查作图﹣复杂作图,解题的关键是掌握线段垂直平分线的性质和等边对等角的性质.
题号
一
二
三
四
五
总分
得分
候选人
笔试成绩
面试成绩
甲
90
88
乙
84
92
丙
x
90
丁
88
86
四川省广安市广安友谊中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】: 这是一份四川省广安市广安友谊中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份哈尔滨市重点中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。