四川省达州市渠县2024年九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
2、(4分)下列各式中正确的是( )
A.B.C.D.
3、(4分)下面调查中,适合采用普查的是( )
A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况
C.调查我市食品合格情况D.调查九江市电视台《九江新闻》收视率
4、(4分)二次根式的值是( )
A.﹣3B.3或﹣3C.9D.3
5、(4分)小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A.50,50B.50,30C.80,50D.30,50
6、(4分)一次函数的图象如图所示,当时,x的取值范围是
A.B.C.D.
7、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是( )
A.y=x+5B.y=x+10C.y=-x+5D.y=-x+10
8、(4分)某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
10、(4分)若为三角形三边,化简___________.
11、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.
12、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
13、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
三、解答题(本大题共5个小题,共48分)
14、(12分)某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示.已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(6015、(8分)如图,在中,,点P从点A开始,沿AB向点B以的速度移动,点Q从B点开始沿BC 以的速度移动,如果P、Q分别从A、B同时出发:
几秒后四边形APQC的面积是31平方厘米;
若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.
16、(8分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?
17、(10分)化简求值:已知,求的值.
18、(10分)用适当的方法解方程.
(1) (2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)(2014•嘉定区二模)一元二次方程x2=x的解为 .
20、(4分)若函数y=(m+1)x+(m2-1) (m为常数)是正比例函数,则m的值是____________。
21、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
22、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.
23、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(- )2×( )-2+(-2019)0
25、(10分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
26、(12分)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.
(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
2、B
【解析】
根据算术平方根的定义对A进行判断;根据二次根式的性质对B进行判断;根据立方根的定义对C进行判断;根据平方根的定义对D进行判断
【详解】
A. =4,此项错误
B. =2 正确
C. =3,此项错误
D. = ,此项错误
故选B
本题考查了二次根式的混合运算,熟练掌握题目的定义是解题的关键
3、B
【解析】
普查的调查结果比较准确,适用于精确度要求高的、范围较小的调查,抽样调查的调查结果比较近似,适用于具有破坏性的、范围较广的调查,由此即可判断.
【详解】
解:A选项全国中学生人数众多,调查范围广,适合抽样调查,故A不符合题意;
B选项所在班级同学人数不多,身高要精确,适合普查,故B符合题意;
C选项我市的食品数量众多,调查范围广,适合抽样调查,故C不符合题意;
D选项调查收视率范围太广,适合抽样调查,故D不符合题意.
故选:B.
本题考查了抽样调查和普查,掌握抽样调查和普查各自的特点是进行灵活选用的关键.
4、D
【解析】
本题考查二次根式的化简, .
【详解】
.
故选D.
本题考查了根据二次根式的意义化简.
二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.
5、A
【解析】
分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
故选A.
点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
6、A
【解析】
解:由图像可知, 当时,x的取值范围是.
故选A.
7、C
【解析】
设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D. C,
∵P点在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周长为10,
∴2(x+y)=10,
∴x+y=5,即y=−x+5,
故选C.
点睛:本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x,y之间的关系是解题的关键.
8、A
【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.
【详解】
解:设原计划x天完成,根据题意可得:,
故选:A.
此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+1+3+4+5)÷5=3,
∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.
考点:方差.
10、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
∴原式==m-2-(m-6)=4,
故答案为:4.
此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.
11、9 .
【解析】
作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF= ,即可得出结论.
【详解】
解:作DE⊥AB于点E,DF⊥AC于点F,
∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
又∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF;
∵∠MDN+∠BAC=180°,
∴∠AMD+∠AND=180°,
又∵∠DNF+∠AND=180°
∴∠EMD=∠FND,
又∵∠DEM=∠DFN,DE=DF,
∴△DEM≌△DFN,
∴S△DEM=S△DFN,
∴S四边形AMDN=S四边形AEDF,
∵,AD平分∠BAC,
∴∠DAF=30°,
∴Rt△ADF中,DF=3,AF= =3 ,
∴S△ADF= AF×DF=×3×3= ,
∴S四边形AMDN=S四边形AEDF=2×S△ADF=9 .
故答案为9 .
本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.
12、1
【解析】
将化为顶点式,即可求得s的最大值.
【详解】
解:,
则当时,取得最大值,此时,
故飞机着陆后滑行到停下来滑行的距离为:.
故答案为:1.
本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.
13、
【解析】
【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
【详解】因为,已知直线在轴上的截距是-2,
所以,b=-2.
又直线与直线平行,
所以,k=3.
故答案为:
【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
三、解答题(本大题共5个小题,共48分)
14、(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.
【解析】
(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;
(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200−x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;
(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
【详解】
(1)依题意得: ,
解得:m=150,
经检验:m=150是原方程的根,
∴m=150;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,
解得:81≤x≤90,
∵x为正整数,
∴该专卖店有9种进货方案;
(3)设总利润为W元,则
W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,
①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,
即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;
②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;
③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,
即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.
本题考查了一次函数的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系;解题时需要根据一次项系数的情况分情况讨论.
15、经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;经过3秒时,S取得最小值27平方厘米.
【解析】
(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;
(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.
【详解】
设经过x秒钟,可使得四边形APQC的面积是31平方厘米,
根据题意得:,
即,
整理得,
解得:,.
答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;
依题意得,,
即,
当,即时,.
答:经过3秒时,S取得最小值27平方厘米.
此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
16、(1)100;0.3;(2)补图见解析;(3)280人.
【解析】
(1)根据爱好体育的有30人,频率为0.25可求出调查的人数,进而可得出a、b值;(2)根据b值补全条形统计图即可;(3)用爱好音乐的学生所占百分比乘以八年级的人数即可得答案.
【详解】
(1)25÷0.25=100(人),
∴a=30÷100=0.3,
故答案为:100;0.3
(2)b=100×0.35=35(人),
补全条形统计图如图:
(3)800×0.35=280(人)
答:该校八年级业余爱好音乐的学生约有280人.
本题考查读条形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、;14
【解析】
原式括号中利用完全平方公式,单项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
【详解】
=
=
=
∴原式
此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
18、(1);(2),
【解析】
(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)整理后求出b2﹣4ac的值,再代入公式求出即可.
【详解】
解:(1).
∴.
∴.
(2)
∴
,.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x1=0,x2=1.
【解析】
试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.
解:x2=x,
移项得:x2﹣x=0,
∴x(x﹣1)=0,
x=0或x﹣1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1.
考点:解一元二次方程-因式分解法.
20、2
【解析】
根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.
【详解】
解:依题意得:m2-2=2且m+2≠2.
解得m=2,
故答案是:2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.
21、
【解析】
先根据得出,再求出的度数,由即可得出结论.
【详解】
,,
,
,
,
.
故答案为:.
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
22、(﹣1,﹣2) .
【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.
2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.
【详解】
由题意及点A的坐标可确定如图所示的直角坐标系,
则B点和A点关于原点对称,所以点B的坐标是(-1,-2).
本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.
23、2
【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.
【详解】
解:∵数据1,3,5,x的众数是3,
∴x=3,
则数据为1、3、3、5,
∴这组数据的平均数为:,
∴这组数据的方差为:;
故答案为:2.
本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.
二、解答题(本大题共3个小题,共30分)
24、2
【解析】
分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.
【详解】
原式= ×4+1
=1+1=2.
考查了实数运算,解题关键是熟记其运算法则.
25、(1)①证明见解析;②;(2);(3).
【解析】
(1)①由,推出,,推出四边形是平行四边形,再证明即可.
②先证明,推出,延长即可解决问题.
(2).只要证明是等边三角形即可.
(3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
四边形是矩形,
,,
,
在和中,
,
,
,,
四边形是平行四边形,
,,
,
四边形是菱形.
②平分,
,
,
,
,
,
,,
,
.
(2)结论:.
理由:如图2中,延长到,使得,连接.
四边形是菱形,,
,,
,
在和中,
,
,
,,
,
,
,
是等边三角形,
,
在和中,
,
,
,,,
,
,
,
,
是等边三角形,
在中,,,
,
.
(3)结论:.
理由:如图3中,将绕点逆时针旋转得到,
,
四点共圆,
,,
,
,
,
在和中,
,
,
,
,,
,
,,
.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
26、(1)四边形ACED是平行四边形.理由如下见解析
(2)8cm.
【解析】
(1)根据正方形的对边互相平行可得AD∥BC,即为AD∥CE,然后根据两组对边互相平行的四边形是平行四边形解答.
(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE,再根据正方形的边长等于对角线的倍求出BC,然后求出BE即可.
【详解】
解:(1)四边形ACED是平行四边形.理由如下:
∵四边形ABCD是正方形,
∴AD∥BC,
即AD∥CE.
∵DE∥AC,
∴四边形ACED是平行四边形.
(2)由(1)知,BC=AD=CE=CD,
∵BD=8cm,
∴BC=BD=×8=4cm,
∴BE=BC+CE=4+4=8cm.
题号
一
二
三
四
五
总分
得分
运动鞋价格
甲
乙
进价元/双)
m
m-30
售价(元/双)
300
200
频数
频率
体育
25
0.25
美术
30
a
音乐
b
0.35
其他
10
0.1
2024-2025学年四川省渠县联考九年级数学第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年四川省渠县联考九年级数学第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省达州市渠县2023-2024学年数学八年级第一学期期末调研试题含答案: 这是一份四川省达州市渠县2023-2024学年数学八年级第一学期期末调研试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列代数式中,属于分式的是等内容,欢迎下载使用。
四川省达州市渠县中学2023-2024学年九年级上学期期中数学测试题: 这是一份四川省达州市渠县中学2023-2024学年九年级上学期期中数学测试题,共5页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。