2024年四川省武胜县九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数y1=k1x+2与反比例函数y2=的图象交点A(m,2)和B(﹣4,﹣1)两点,若y1>y2,则x的取值范围是( )
A.x<﹣4或0<x<2B.x>2或﹣4<x<0
C.﹣4<x<2D.x<﹣4或x>2
2、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A.B.C.D.
3、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
4、(4分)下列调查中,适合采用普查的是 ( )
A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误
C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识
5、(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是( )
A.4B.5C.6D.7
6、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
7、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为( )
A.B.C.D.
8、(4分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
10、(4分)已知一组数据 a,b,c,d的方差是4,那么数据,,, 的方差是________.
11、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________
12、(4分)在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________
13、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)
15、(8分)已知5x+y=2,5y﹣3x=3,在不解方程组的条件下,求3(x+3y)2﹣12(2x﹣y)2的值.
16、(8分)对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(1,﹣2)=1.
(1)求a,b的值;
(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.
17、(10分)因式分解:
(1)2x3﹣8x;
(2)(x+y)2﹣14(x+y)+49
18、(10分)随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.
(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;
(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.
20、(4分)若实数a、b满足,则=_____.
21、(4分)化简:(2)2=_____.
22、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
23、(4分)计算:=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.
(1)如图1,求证:AE=EF;
(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.
25、(10分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
26、(12分)在进行二次根式运算时,我们有时会碰上如这样的式子,我们还可以将其进一步化简:以上这种化简过程叫做分母有理化.还可以尝试用以下方法化简:
(1)请用两种不同的方法化简;
(2)请任选一种方法化简:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先把B点坐标代入y1=求出k1的值得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后写出一次函数图象在反比例函数图象上方所对应的自变量的范围.
【详解】
解:把B(﹣4,﹣1)代入y1=得k1=﹣4×(﹣1)=4,
所以反比例函数解析式为y1=,
把A(m,1)代入y1=得1m=4,解得m=1,
所以A(1,1),
当﹣4<x<0或x>1时,y1>y1.
故选:B.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
2、B
【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.
【详解】
解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.
本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.
3、D
【解析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
【详解】
解不等式组可求得:
不等式组的解集是,
故选D.
本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
4、B
【解析】
分析:根据抽样调查和全面调查的意义解答即可.
详解: A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;
B. 调查某本书中的印刷错误比较重要,宜采用普查;
C. 调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;
D. 调查公民保护环境的意识工作量比较大,宜采用抽样调查;
故选B.
点睛: 本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、A
【解析】
根据题意得:B(2,﹣),可得E的纵坐标为﹣,F的横坐标为2.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.
【详解】
解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3
∴B(2,﹣)
∴E的纵坐标为﹣,F的横坐标为2.
∵y=x﹣2与边AB、BC分别交于点E、F.
∴当x=2时,y=.
当y=﹣时,x=2.
∴E(2,﹣),F(2,)
∴BE=4,BF=2
∴S△BEF=BE×BF=4
故选A.
本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.
6、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
7、D
【解析】
由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.
【详解】
解:∵AC=2,BD=4,四边形ABCD是平行四边形,
∴AO=AC=1,BO=BD=2,
∵AB=,
∴AB2+AO2=BO2,
∴∠BAC=90°,
∵在Rt△BAC中,BC=,
S△BAC=×AB×AC=×BC×AE,
∴×2=AE,
∴AE=,
故选:D.
本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.
8、B
【解析】
由题意可知,
当时,;
当时,
;
当时,.∵时,;时,.∴结合函数解析式,
可知选项B正确.
考点:1.动点问题的函数图象;2.三角形的面积.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
【详解】
如图,过点D作DF⊥BC于点F,
∵四边形ABCD是菱形,
∴BC=CD,AD∥BC,
∵∠DEB=90°,AD∥BC,
∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
∴四边形DEBF是矩形,
∴DF=BE,DE=BF,
∵点C的横坐标为5,BE=3DE,
∴BC=CD=5,DF=3DE,CF=5﹣DE,
∵CD2=DF2+CF2,
∴25=9DE2+(5﹣DE)2,
∴DE=1,
∴DF=BE=3,
设点C(5,m),点D(1,m+3),
∵反比例函数y=图象过点C,D,
∴5m=1×(m+3),
∴m=,
∴点C(5,),
∴k=5×=,
故答案为:
本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
10、
【解析】
方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变.从而可得答案.
【详解】
解:设数据a、b、c、d的平均数为,
数据都加上了2,则平均数为,
∵
故答案为1.
本题考查了方差,说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.掌握以上知识是解题的关键.
11、
【解析】
求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
【详解】
设最小正方形的边长为1,则小正方形边长为2,
阴影部分面积=2×2×4+1×1×2=18,
白色部分面积=2×2×4+1×1×2=18,
故石子落在阴影区域的概率为.
故答案为:.
本题考查了概率,正确运用概率公式是解题的关键.
12、或或
【解析】
分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.
【详解】
解:I.当时,如图1所示.
,,
,
为等边三角形,
;
II.当时,如图2所示.
在中,,,
,.
在中,,
,
或.
故答案为12或或.
本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.
13、
【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
【详解】
解:直线向右平移个单位后的解析式为,
令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
所以直线与坐标轴所围成的三角形面积是.
故答案为:.
本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、船向岸边移动了大约3.3m.
【解析】
由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.
【详解】
解:∵在中,,,,
∴.
∵此人以0.5m/s的速度收绳,6s后船移动到点D的位置,
∴.
∴.
∴.
答:船向岸边移动了大约3.3m.
本题是勾股定理的应用,灵活运用勾股定理求线段长是解题的关键,
15、1.
【解析】
将原式进行因式分解,便可转化为已知的代数式组成的式子,进而整体代入,便可求得其值.
【详解】
原式=3[(x+3y)2﹣4(2x﹣y)2]
=3[(x+3y)+2(2x﹣y)](x+3y)﹣2(2x﹣y)]
=3(5x+y)(5y﹣3x),
∵5x+y=2,5y﹣3x=3,
∴原式=3×2×3=1.
本题主要考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子,是本题解题的关键所在.
16、(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2.
【解析】
(1)根据题意把T(1,1)=2.5,T(1,﹣2)=1代入T(x,y)=即可求出a,b的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.
【详解】
(1)根据题意得:,
①+②得:3a=9,即a=3,
把a=3代入①得:b=2,
故a,b的值分别为3和2;
(2)根据题意得:,
由①得:m≤,
由②得:m>p﹣3,
∴不等式组的解集为p﹣3<m≤,
∵不等式组恰好有2个整数解,即m=0,1,
∴﹣1≤p﹣3<0,
解得≤p<2,
即实数P的取值范围是≤p<2.
此题主要考查不等式组的解,解题的关键是根据题意列出不等式并根据题意解出.
17、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.
【解析】
(1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;
(1)直接利用完全平方公式分解因式得出答案.
【详解】
解:(1)原式=1x(x1﹣4)
=1x(x+1)(x﹣1);
(1)原式=(x+y﹣7)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
18、 (1) y=0.8x+50;(2)见解析.
【解析】
分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;
(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.
详解:(1)普通会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
当0<x≤300时,y=x+30;
当x>300时,y=0.9x;
VIP会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
y=0.8x+50;
(2)当0.9x<0.8x+50时,
解得:x<500;
当0.9x=0.8x+50时,x=500;
当0.9x>0.8x+50时,x>500;
∴当购买的商品金额300<x<500时,按普通会员购买合算;
当购买的商品金额x>500时,按VIP会员购买合算;
当购买商品金额x=500时,两种方式购买一样合算.
点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,
分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据方程的解是函数图象与x轴的交点的横坐标,即可求解.
【详解】
解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
∴方程kx+b=0的解是x=1.
故答案为:1.
本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标
20、﹣
【解析】
根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.
21、1.
【解析】
根据二次根式的性质:进行化简即可得出答案.
【详解】
故答案为:1.
本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.
22、48°
【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
【详解】
∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
∴AC=DC,
∵∠CAB=66°,
∴∠CDA=66°,
∴∠ACD=180°-∠A-∠CDA=48°,
∴∠BCE=∠ACD=48°,
故答案为:48°.
本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
23、 ﹣1
【解析】
利用二次根式的性质将二次根式化简得出即可.
【详解】
解:=|1-|= ﹣1.
故答案为: ﹣1.
本题考查二次根式的化简求值,正确化简二次根式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2).
【解析】
(1)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;
(2)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
【详解】
(1)证明:如图1,在AB上截取BM=BE,连接ME,
∵∠B=90°,
∴∠BME=∠BEM=45°,
∴∠AME=135°
∵CF是正方形的∠C外角的平分线,
∴∠ECF=90°+45°=135°
∴∠AME=∠ECF,
∵AB=BC,BM=BE,
∴AM=EC,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠CEF=90°,
∵∠BAE+∠AEB=90°,
∴∠BAE=∠CEF,
在△AME和△ECF中
,
∴△AME≌△ECF(ASA),
∴AE=EF;
(2)解:取AB中点M,连接EM,
∵AB=BC,E为BC中点,M为AB中点,
∴AM=CE=BE,
∴∠BME=∠BME=45°,
∴∠AME=135°=∠ECF,
∵∠B=90°,
∴∠BAE+∠AEB=90°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
在△AME和△ECF中
,
∴△AME≌△ECF(ASA),
∴EM=CF,
∵AB=2,点E是边BC的中点,
∴BM=BE=1,
∴CF=ME=.
本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
25、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
26、(1);(2).
【解析】
(1)利用分母有理化计算或把分子因式分解后约分;
(2)先分母有理化,然后合并即可.
【详解】
(1)方法一:
方法二:
(2)原式,
,
,
.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
题号
一
二
三
四
五
总分
得分
批阅人
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
2024年四川省南充高级中学数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024年四川省南充高级中学数学九年级第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省通江县涪阳中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省通江县涪阳中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省绵阳市游仙区九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省绵阳市游仙区九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。