四川省成都市树德实验中学2024年数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列调查中,适合采用普查的是()
A.了解一批电视机的使用寿命
B.了解全省学生的家庭1周内丢弃塑料袋的数量
C.了解某校八(2)班学生的身高
D.了解淮安市中学生的近视率
2、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
A.12B.11C.10D.9
3、(4分)正方形具有而菱形不一定具有的性质是 ( )
A.对角线相等B.对角线互相垂直平分
C.四条边相等D.对角线平分一组对角
4、(4分)下列关于一次函数的说法中,错误的是( )
A.函数图象与轴的交点是
B.函数图象自左至右呈下降趋势,随的增大而减小
C.当时,
D.图象经过第一、二、三象限
5、(4分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )
A.B.C.D.
6、(4分)某楼盘2016年房价为每平方米15600元,经过两年连续降价后,2018年房价为每平方米12400元。设该楼盘这两年房价每年平均降低率为x,根据题意可列方程为( )
A.15600(1-2x)=12400B.2×15600(1-2x)=12400
C.15600(1-x)2=12400D.15600(1-x2)=12400
7、(4分)小华用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,则他摆完这个直角三角形共用火柴棒( )
A.25根B.24根C.23根D.22根
8、(4分)已知n是自然数,是整数,则n最小为( )
A.0B.2C.4D.40
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
10、(4分)如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.
11、(4分)如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_______.
12、(4分)若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.
13、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)知y+3与5x+4成正比例,当x=1时,y=—18,
(1)求y关于x的函数关系。
(2)若点(m,—8)在此图像上,求m的值。
15、(8分)解方程:
(1)x2-3x+1=1;
(2)x(x+3)-(2x+6)=1.
16、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
17、(10分)已知y﹣2与x成正比例,当x=2时,y=1.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.
18、(10分)已知,,若,试求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
20、(4分)若-,则的取值范围是__________.
21、(4分)函数y=中,自变量x的取值范围是________.
22、(4分)关于的方程是一元二次方程,那么的取值范围是_______.
23、(4分)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
25、(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
26、(12分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化的面积的2倍,并且在独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.
(1)甲、乙两个工程队每天能完成绿化的面积分别是多少?
(2)若学校每天需付给甲队的绿化费用为0.5万元,乙队为0.3万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据普查的选择方法即可判断.
【详解】
A. 了解一批电视机的使用寿命,适合采用抽样调查;
B. 了解全省学生的家庭1周内丢弃塑料袋的数量,适合采用抽样调查;
C. 了解某校八(2)班学生的身高,适合采用普查
D. 了解淮安市中学生的近视率,适合采用抽样调查;
故选C.
此题主要考查统计调查的分式,解题的关键是熟知普查的适用范围.
2、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,计算即可.
【详解】
∵点D,E分别AB、BC的中点,
∴DE=AC=3.5,
同理,DF=BC=3,EF=AB=2.5,
∴△DEF的周长=DE+EF+DF=9,
故选D.
本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
3、A
【解析】
根据正方形和菱形的性质可以判断各个选项是否正确.
【详解】
解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;
正方形和菱形的对角线都互相垂直平分,故B不符合题意;
正方形和菱形的四条边都相等,故C不符合题意;
正方形和菱形的对角线都平分一组对角,故D不符合题意,
故选:A.
本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.
4、D
【解析】
根据一次函数的图像与性质即可求解.
【详解】
A. 函数图象与轴的交点是,正确;
B. 函数图象自左至右呈下降趋势,随的增大而减小,正确
C. 当时,解得,正确
D. 图象经过第一、二、四象限,故错误.
故选D.
此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.
5、B
【解析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.
【详解】
解:∵∠OAA1=90°,OA=,∠AOA1=30°,
∴AA1= OA1,
由勾股定理得:OA2+AA12=OA12,
即()2+(OA1 )2=OA12,
解得:OA1=2,
∵∠A1OA2=30°,
∴A1A2的长= =
故选:B.
本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.
6、C
【解析】
分析:首先根据题意可得2017年的房价=2016年的房价×(1+增长率),2018年的房价=2017年的房价×(1+增长率),由此可得方程.
详解:解:设这两年平均房价年平均增长率为x,根据题意得:
15600(1-x)2=12400,
故选C.
点睛:本题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
7、B
【解析】
根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量
【详解】
∵两直角边分别用了6根、8根长度相同的火柴棒
∴由勾股定理,得到斜边需用:(根),
∴他摆完这个直角三角形共用火柴棒是:6+8+10=24(根).
故选B.
本题考查勾股定理的应用,是基础知识比较简单.
8、C
【解析】
求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.
【详解】
解:∵n是自然数,是整数,且211-n≥1.
∴(211-n)是完全平方数,且n≤211.
∴(211-n)最大平方数是196,即n=3.
故选:C.
主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据平行四边形的性质可得到答案.
【详解】
∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
10、(0,1).
【解析】
试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
试题解析:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
考点: 坐标与图形变化-旋转.
11、(1,3)
【解析】
先确定点A到点A1的平移方式,然后根据平移方式即可确定点B平移后的点B1的坐标.
【详解】
∵点A(-3,-1)落在A1(0,1)是点A向右移动3个单位,向上移动2个单位.
∴点B(-2,1) 向右移动3个单位,向上移动2个单位后的点坐标B1为(1,3).
故答案为:(1,3).
本题考查坐标与图形变化——平移.能理解A与A1,B与B1分别是平移前后图形上的两组对应点,它们的平移方式相同是解决此题的关键.
12、-1
【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.
13、1
【解析】
∵点P(3,2)在函数y=3x-b的图象上,
∴2=3×3-b,
解得:b=1.
故答案是:1.
三、解答题(本大题共5个小题,共48分)
14、 (1) y=x;
(2) m=.
【解析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
【详解】
(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.
本题考查一次函数,解题的关键是掌握待定系数法求解析式.
15、(4)x4=,x2=;(2)x4=-3,x2=2.
【解析】
试题分析:(4)直接利用公式法求出x的值即可;
(2)先把原方程进行因式分解,再求出x的值即可.
试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,
∴△=b2-4ac=(-3)2-4×4×4=3.
∴x=.
即x4=,x2=;
(2)∵因式分解得 (x+3)(x-2)=4,
∴x+3=4或x-2=4,
解得 x4=-3,x2=2.
考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.
16、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.
【解析】
【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.
【详解】解:(1)直角坐标系如图所示.
图书馆的坐标为B(-2,-2).
(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.
【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.
17、(1)y=2x+2;(2)如图见解析;(3)-2≤x≤2。
【解析】
(1)根据正比例的定义设y-2=kx(k≠2),然后把已知数据代入进行计算求出k值,即可得解;
(2)利用描点法法作出函数图象即可;
(3)根据图象可得结论.
【详解】
(解:(1)∵y-2与x成正比例,
∴设y-2=kx(k≠2),
∵当x=2时,y=1,
∴1-2=2k,
解得k=2,
∴y-2=2x,
函数关系式为:y=2x+2;
(2)当x=2时,y=2,
当y=2时,2x+2=2,解得x=-1,
所以,函数图象经过点(2,2),(-1,2),
同理,该函数图象还经过点(1,4),(-2,-2),(-3,-4).
函数图象如图:
.
(3)由图象得:当-2≤y≤2时,自变量x的取值范围是:-2≤x≤2.
本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.
18、
【解析】
首先利用,代入进行化简,在代入参数计算.
【详解】
解:原式 = = =
本题主要考查分式的化简计算,注意这是二元一次方程的解,利用根与系数的关系也可以计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
20、
【解析】
利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.
【详解】
解:∵,
∴.
∴,即.
故答案为: .
本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.
21、x≤1
【解析】
分析:根据二次根式有意义的条件解答即可.
详解:
∵二次根式有意义,被开方数为非负数,
∴1 -x≥0,
解得x≤1.
故答案为x≤1.
点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.
22、
【解析】
根据一元二次方程的概念及一般形式:即可求出答案.
【详解】
解:∵关于的方程是一元二次方程,
∴二次项系数,
解得;
故答案为.
本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.
23、1.
【解析】
根据题意确定点A/的纵坐标,根据点A/落在直线y=-x上,求出点A/的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.
解:由题意可知,点A移动到点A/位置时,纵坐标不变,
∴点A/的纵坐标为6,
-x=6,解得x=-1,
∴△OAB沿x轴向左平移得到△O/A/B/位置,移动了1个单位,
∴点B与其对应点B/间的距离为1.
故答案为1.
“点睛”本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).
【解析】
(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.
(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,
【详解】
(1)设直线AB的函数解析式为y=kx+b,则 解方程组得
直线AB的函数解析式为y= -x+6,
(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则 ,
解方程组得
所以直线AB′的解析式为,
当x=0时,y=,
所以M点的坐标为(0,),
(3)有符合条件的点M,理由如下:
如图:因为△ABM是以AB为直角边的直角三角形,
当∠MAB=90°时,直线MA垂直直线AB,
∵直线AB的解析式为y=-x+6,
∴设MA的解析式为y=x+b,
∵点A(4,2),
∴2=4+b,
∴b=-2,
当∠ABM′=90°时,BM′垂直AB,
设BM′的解析式为y=x+n,
∵点B(6,0)
∴6+n=0
∴n=-6,
即有满足条件的点M为(0,-2)或(0,-6).
本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.
25、 (1)见解析;(2)见解析.
【解析】
试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;
(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.
试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;
(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.
考点:矩形的性质;平行四边形的判定与性质;菱形的判定;探究型.
26、(1)甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)至少应安排甲队工作10天.
【解析】
(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据“在独立完成面积为600m1区域的绿化时,甲队比乙队少用6天”,即可得出关于x的分式方程,解之并检验后,即可得出结论;
(1)设安排甲工程队工作y天,则乙工程队工作天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小正整数即可.
【详解】
(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,
根据题意得:,
解得:x=2.
经检验,x=2是原方程的解,
∴1x=3.
答:甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.
(1)设安排甲工程队工作y天,则乙工程队工作天,
根据题意得:0.5y+0.3(40﹣1y)≤10,
解得:y≥10.
答:至少应安排甲队工作10天.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x的分式方程;(1)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y的一元一次不等式.
题号
一
二
三
四
五
总分
得分
批阅人
四川省成都市青羊区树德实验中学2025届九年级数学第一学期开学调研模拟试题【含答案】: 这是一份四川省成都市青羊区树德实验中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市成都高新实验中学2025届数学九上开学达标检测模拟试题【含答案】: 这是一份四川省成都市成都高新实验中学2025届数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省成都市树德中学九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024年四川省成都市树德中学九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。