朔州市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)使式子有意义的x的取值范围是( )
A.x≥0B.x>0C.x>3D.x≥3
2、(4分)我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是( )
A.40B.50C.57D.75
3、(4分)如图,四边形是菱形,经过点、、,与相交于点,连接、.若,则的度数为( )
A.B.C.D.
4、(4分)下列式子因式分解正确的是( )
A.x2+2x+2=(x+1)2+1B.(2x+4)2=4x2+16x+16
C.x2﹣x+6=(x+3)(x﹣2)D.x2﹣1=(x+1)(x﹣1)
5、(4分)如图,在ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).
A.AE=CFB.DE=BFC.D.
6、(4分)二次根式、、、、、中,最简二次根式有( )个.
A.1 个B.2 个C.3 个D.4个
7、(4分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中点M的坐标为( )
A.(,1)B.(1,)C.(,)D.(,)
8、(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是_____.
10、(4分)计算:=_____________.
11、(4分)已知等边三角形的边长是2,则这个三角形的面积是_____.(保留准确值)
12、(4分)直线与轴的交点坐标___________
13、(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.
三、解答题(本大题共5个小题,共48分)
14、(12分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,
(1)写出y甲,y乙与x的函数关系式.
(2)学生人数在什么情况下,选择哪个旅行社合算?
15、(8分)9月28日,我国神舟七号载人飞船顺利返回地面,下面是“神舟”七号飞船返回舱返回过程中的相关记录:从返回舱制动点火至减速伞打开期间,返回舱距离地面的高度与时间呈二次函数关系,减速伞打开后,返回舱距离地面的高度与时间呈一次函数关系,高度和时间的对应关系如下表:
设减速伞打开后x分钟,返回舱距离地面的高度为hkm,求h与x的函数关系式。
在返回舱在距离地面5km时,要求宇航员打开电磁信号灯以便地面人员搜寻,判断宇航员应在何时开启信号灯?
16、(8分)如图,在平面直角坐标系中,为坐标原点,已知直线经过点,它与轴交于点,点在轴正半轴上,且.求直线的函数解析式;
17、(10分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
18、(10分)已知:如图,四边形中,分别是的中点.
求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
20、(4分)两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。
21、(4分)将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.
22、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
23、(4分)化简:________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中是方程的解.
25、(10分)计算:(2﹣)×÷5.
26、(12分)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.
(1)求证:AB=AC;
(2)若∠BAC=60°,BC=6,求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次根式有意义的条件:被开方数是非负数,列不等式求解.
【详解】
解:∵式子有意义,
∴x-3≥0,
解得:x≥3,
故选D..
本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.
2、B
【解析】
根据众数的定义求解即可.
【详解】
在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.
故选B.
此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
3、C
【解析】
由菱形的性质求出∠ACB=50°,由边形是圆内接四边形可求出∠AEB=80°,然后利用三角形外角的性质即可求出的度数.
【详解】
∵四边形是菱形,,
∴,
∵四边形是圆内接四边形,
∴,
∴,
故选:C.
本题考查了菱形的性质,圆内接四边形的性质,三角形外角的性质. 圆内接四边形的性:①圆内接四边形的对角互补,②圆内接四边形的外角等于它的内对角,③圆内接四边形对边乘积的和,等于对角线的乘积.
4、D
【解析】
利用因式分解定义,以及因式分解的方法判断即可.
【详解】
解:A、x2+2x+2不能进行因式分解,故A错误;
B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;
C、,等式左右不相等,故C错误;
D、x2﹣1=(x+1)(x﹣1),正确
故选:D.
本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.
5、B
【解析】
根据平行四边形的性质以及平行四边形的判定定理即可作出判断.
【详解】
解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,
若AE=CF,则OE=OF,
∴四边形DEBF是平行四边形;
B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;
C、∵在平行四边形ABCD中,OB=OD,AD∥BC,
∴∠ADB=∠CBD,
若∠ADE=∠CBF,则∠EDB=∠FBO,
∴DE∥BF,
则△DOE和△BOF中,,
∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确;
D、∵∠AED=∠CFB,
∴∠DEO=∠BFO,
∴DE∥BF,
在△DOE和△BOF中,,
∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确.
故选B.
本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.
6、C
【解析】
直接利用最简二次根式的定义判断得出结论即可.
【详解】
在二次根式、、、、、中,最简二次根式有: 、、,共3个
故选:C
本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
7、B
【解析】
由正方形和旋转的性质得出AB=BC'=,∠BAM=∠BC'M=90°,证出Rt△ABM≌Rt△C'BM,得出∠1=∠2,求出∠1=∠2=30°,在Rt△ABM中,求出AM的长即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=BC'=,∠BAM=∠BC'M=90°,
在Rt△ABM和Rt△C'BM中,,
∴Rt△ABM≌Rt△C'BM(HL),
∴∠1=∠2,
∵将边长为的正方形绕点B逆时针旋转30°,
∴∠CBC'=30°,
∴∠1=∠2=30°,
在Rt△ABM中,AB=,∠1=30°,
∴AB=AM=,
∴AM=1,
∴点M的坐标为(1,);
故选B.
本题考查了正方形的性质、旋转的性质、坐标与图形性质、全等三角形的判定与性质、直角三角形的性质等知识;熟练掌握旋转的性质和正方形的性质,证明三角形全等是解决问题的关键.
8、A
【解析】
根据配方法的步骤逐项分析即可.
【详解】
∵x2+px+q=0,
∴x2+px=-q,
∴x2+px+=-q+,
∴.
故选A.
本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m≤1
【解析】
根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4﹣4m≥0,
∴m≤1,
故答案为m≤1.
此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.
10、
【解析】
根据二次根式的性质和二次根式的化简,可知==.
故答案为.
此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
11、
【解析】
解:如图,过点A作AD⊥BC于点D,
∵等边三角形的边长是2,
∴BD=BC=×2=1,
在Rt△ABD中,AD= =
所以,三角形的面积=×2×=
故答案为:.
本题考查等边三角形的性质,比较简单,作出图形求出等边三角形的高线的长度是解题的关键.
12、(0,-3)
【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.
【详解】
解:由题意得:当x=0时,y=2×0-3=-3,
即直线与y轴交点坐标为(0,-3),
故答案为(0,-3).
本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.
13、1
【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
【详解】
解:∵被调查学生的总数为10÷20%=50人,
∴最喜欢篮球的有50×32%=16人,
则最喜欢足球的学生数占被调查总人数的百分比= ×100%=1%.
故答案为:1.
本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
三、解答题(本大题共5个小题,共48分)
14、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.
【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;
(2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.
【详解】
试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x =800x+1600;
(2)当<时,即:700x+2000<800x+1600
解得:x>4 ,
当>时,即:700x+2000>800x+1600
解得:x<4 ,
当=时,即:700x+2000=800x+1600
解得:x=4 ,
答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.
考点: 一次函数的应用.
15、(1)h=-2x+20 (2)5时25分30秒(或减速伞打开后7.5秒)
【解析】(1)由图表值减速伞打开后的距离地面的高度是20,每分钟降2 km,列函数关系式为h=-2x+20
(2)因为每分钟降2 km,距离地面5km时,宇航员应在5时25分30秒开启信号灯
16、
【解析】
先求出,再由待定系数法求出直线的解析式.
【详解】
解:,
,
,
,
在轴正半轴,
,
设直线解析式为:,
∵在此图象上,代入到解析式中得:
,
解得.
直线的函数解析式为:.
主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解本题的关键是熟练掌握待定系数法.
17、 (1)5立方米;(2)y=4x+3;(3)1,11.
【解析】
【分析】(1)用体积变化量除以时间变化量即可求出注入速度;
(2)根据题目数据利用待定系数法求解;
(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.
【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;
(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有
,解得:,
∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;
(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;
只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟
∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,
故答案为1,11.
【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.
18、见解析.
【解析】
连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.
【详解】
证明:如图,连接BD.
∵F,G分别是BC,CD的中点,
所以FG∥BD,FG=BD.
∵E,H分别是AB,DA的中点.
∴EH∥BD,EH=BD.
∴FG∥EH,且FG=EH.
∴四边形EFGH是平行四边形.
此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.
【详解】
解:连接,取的中点,连,,
则,,,
∵,为中点
∴,
∵BD平分,
∴BE=EG
设,
则,
∴在中,
,
解得(舍),
∴,,
∴.
本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.
20、40cm,100cm
【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.
∵周长之比等于相似比.
∴10/25 =x/(x+60).
解得x=40cm,x+60=100cm.
21、
【解析】
先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.
【详解】
解:设原来矩形的长为x,宽为y,
则对折后的矩形的长为y,宽为,
∵得到的两个矩形都和原矩形相似,
∴x:y=y:,
解得x:y=:1.
∴矩形的短边与长边的比为1:,
故答案为:.
本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.
22、2 或9−3.
【解析】
分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
【详解】
当B′在横对称轴上,此时AE=EB=3,如图1所示,
由折叠可得△ABF≌△AB′F
∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
∴∠B′MF=∠B′FM,
∴B′M=B′F,
∵EB′∥BF,且E为AB中点,
∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
∴EM=BF,
设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
解得:x=2 ,即BF=2;
当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
设BF=x,B′N=y,则有FN=4−x,
在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
∵∠AB′F=90°,
∴∠AB′M+∠NB′F=90°,
∵∠B′FN+∠NB′F=90°,
∴∠B′FN=∠AB′M,
∵∠AMB′=∠B′NF=90°,
∴△AMB′∽△B′NF,
∴ ,即,
∴y= x,
∴(x) +(4−x) =x,
解得x=9+3 ,x=9−3,
∵9+3>4,舍去,
∴x=9−3
所以BF的长为2或9−3,
故答案为:2 或9−3.
此题考查翻折变换(折叠问题),解题关键在于作辅助线
23、;
【解析】
直接进行约分化简即可.
【详解】
解:,
故答案为:.
此题考查约分,分子分母同除一个不为零的数,分式大小不变.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
【分析】括号内先通分进行分式的加减运算,再进行分式的乘除运算,解方程求出x的值,然后选择使分式有意义的值代入代简后的结果进行计算即可得.
【详解】原式=÷
= •
=,
解方程(x+1)2=4得x1=1, x2=-3 ,
当a=1时,原分式无意义,
所以,当a=-3时,原式=.
【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
25、-
【解析】
先化简二次根式,然后利用乘法的分配率进行计算,最后化成最简二次根式即可.
【详解】
原式=(4-)×÷5=(3-)÷5=-
本题考查二次根式的混合运算,解答本题的关键是明确二次根式运算的法则和运算律.
26、(1)见解析;(2)
【解析】
(1)由角平分线上的点到角两边的距离相等可得DE=DF,利用HL易证Rt△BDE≌Rt△CDF,从而得到∠B=∠C,然后再用AAS证明△ABD≌△ACD即可得证.
(2)由∠BAC=60°和AB=AC可得△ABC为等边三角形,从而得到AB=BC=6,再由勾股定理求出高AD,即可求△ABC的面积.
【详解】
(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF,∠BAD=∠CAD
在Rt△BDE和Rt△CDF中,
∵BD=CD,DE=DF
∴Rt△BDE≌Rt△CDF(HL)
∴∠B=∠C
在△ABD和△ACD中,
∵∠BAD=∠CAD,∠B=∠C,BD=CD
∴△ABD≌△ACD(AAS)
∴AB=AC
(2)∵∠BAC=60°,AB=AC
∴△ABC为等边三角形
∴AB=BC=6
又∵△ABD≌△ACD(已证)
∴∠ADB=∠ADC=90°
∵BC=6,BD=CD
∴BD=3
在Rt△ABD中,AD=
∴S△ABC=
本题考查全等三角形,等边三角形的判定与性质与勾股定理,熟练掌握角平分线的性质定理,得出全等条件是解题的关键.
题号
一
二
三
四
五
总分
得分
类别
A
B
C
D
E
F
类型
足球
羽毛球
乒乓球
篮球
排球
其他
人数
10
4
6
2
时间
4:45
5:12
5:15
5:18
5:24
5:26
5:28
返回舱距离地面的高度
350km
134km
80km
20km
8km
4km
0km
降落状态
返回舱制动点火
返回舱高速进入黑障区
引导伞引出减速伞
减速伞打开
返回舱抛掉放热大底
着陆系统正式启动
返回舱成功降落地面
内江市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份内江市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
南充市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份南充市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
拉萨市重点中学2025届数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份拉萨市重点中学2025届数学九年级第一学期开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。