搜索
    上传资料 赚现金
    英语朗读宝

    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第1页
    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第2页
    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】

    展开

    这是一份陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直线y=2x向下平移2个单位长度得到的直线是( )
    A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+2
    2、(4分)如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是( )
    A.AB∥CDB.OA=OCC.∠ABC+∠BCD=180°D.AB=BC
    3、(4分)如图,的对角线、交于点,平分交于点,,,连接.下列结论:①;②平分;③;④其中正确的个数有( )
    A.个B.个C.个D.个
    4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是( )
    A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE
    5、(4分)如图,在中,平分,且,则的周长为( )
    A.B.C.D.
    6、(4分)如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≤0的解为( )
    A.x≤0 B.x≥0 C.x≥2 D.x≤2
    7、(4分)在 △ABC 中, AC  9 , BC  12 , AB  15 ,则 AB 边上的高是( )
    A.B.C.D.
    8、(4分)如图, 四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
    10、(4分)计算:=__________.
    11、(4分)学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:
    那么这五位同学演讲成绩的众数是_____,中位数是_____.
    12、(4分)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
    13、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)
    (1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;
    (2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;
    (3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.
    15、(8分)(1)计算
    (2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
    解方程
    解:方程两边乘,得第一步
    解得 第二步
    检验:当时,.
    所以,原分式方程的解是 第三步
    小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
    16、(8分)平行四边形ABCD中,对角线AC上两点E,F,若AE=CF,四边形DEBF是平行四边形吗?说明你的理由.
    17、(10分)如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.
    (1)求证:AO=CM;
    (2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.
    18、(10分)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
    求证:(1)BC=AD;
    (2)△OAB是等腰三角形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.
    20、(4分)一种运算:规则是x※y=-,根据此规则化简(m+1)※(m-1)的结果为_____.
    21、(4分)关于x的方程a2x+x=1的解是__.
    22、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
    23、(4分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2
    (知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.
    (拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为 (请直接写出结果)
    25、(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).
    (1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
    (2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;
    (3)连CB2,直接写出点B2、C2的坐标B2: 、C2: .
    26、(12分)解不等式组:,并在数轴上表示出它的解集。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
    【详解】
    直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
    故选:C.
    本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.
    2、D
    【解析】
    根据平行四边形的性质分析即可.
    【详解】
    解:由平行四边形的性质可知:
    平行四边形对边平行,故A一定成立,不符合题意;
    平行四边形的对角线互相平分;故B一定成立,不符合题意;
    平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;
    平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.
    故选:D.
    本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.
    3、C
    【解析】
    求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD的中位线,即可得到.
    【详解】
    解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
    ∴∠ADE=∠DAE=60°=∠AED,
    ∴△ADE是等边三角形,
    ∴E是AB的中点,
    ∴DE=BE,
    ∴∠ADB=90°,即AD⊥BD,
    ∴S▱ABCD=AD•BD,故①正确;
    ∵∠CDE=60°,∠BDE=30°,
    ∴∠CDB=∠BDE,
    ∴DB平分∠CDE,故②正确;
    ∵Rt△AOD中,AO>AD,
    ∴AO>DE,故③错误;
    ∵O是BD的中点,E是AB的中点,
    ∴OE是△ABD的中位线,
    ∴,故④正确;
    正确的有3个
    故选C
    本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,熟练掌握性质定理和判定定理是解题的关键.
    4、B
    【解析】
    连接BE,根据中垂线的性质可得:BE=AE,∠ABE=∠A=30°,根据直角三角形的性质可得:∠EBC=30°,CE=BE,即AE=BE=2CE.
    【详解】
    连接BE,根据中垂线的性质可得:BE=AE;
    ∴∠ABE=∠A=30°;
    又∵在中, ∠EBC=30°;
    ∴CE=BE,
    即AE=BE=2CE.
    故选B.
    本题主要考查了中垂线的性质和直角三角形的性质,掌握中垂线的性质和直角三角形的性质是解题的关键.
    5、D
    【解析】
    根据角平分线的定义可得∠BAE=∠DAE,再根据平行四边形的对边平行,可得AD∥BC,然后利用两直线平行,内错角相等可得∠AEB=∠DAE,根据等角对等边可得AB=BE,然后根据平行四边形的周长公式列式计算即可得解.
    【详解】
    解:∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵在▱ABCD中,AD∥BC,
    ∴∠AEB=∠DAE,
    ∴AB=BE=2,
    ∵BE=CE=2,
    ∴BC=4,
    ∴▱ABCD的周长=2(AB+BC)=2×(2+4)=1.
    故选:D.
    本题考查平行四边形的性质,平行线的性质,熟记各性质并判断出AB=BE是解题的关键.
    6、A.
    【解析】
    试题分析:由kx+b+3≤1得kx+b≤-3,
    直线y=kx+b与y轴的交点为B(1,-3),
    即当x=1时,y=-3,
    ∵函数值y随x的增大而增大,
    ∴当x≥1时,函数值kx+b≥-3,
    ∴不等式kx+b+3≥1的解集是x≥1.
    故选A.
    考点:一次函数与一元一次不等式.
    7、A
    【解析】
    首先由题目所给条件判断△ABC是直角三角形,再按照面积法求解即可.
    【详解】
    解:∵,,
    ∴.
    ∴△ABC是直角三角形且.
    ∴由直角三角形面积的计算方法,可知AB 边上的高是.
    故选A.
    本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.
    8、D
    【解析】
    由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,AB∥DC,AB=CD,
    又∵点E是BC的中点,
    ∴OE是△BCD的中位线,
    ∴OE=DC,OE∥DC,,
    ∴∠BOE=∠ODC,
    ∴选项A、B、C正确;
    ∵OE≠BE,
    ∴∠BOE≠∠OBC,
    ∴选项D错误;
    故选:D.
    此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、AB=CD(答案不唯一)
    【解析】
    由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
    【详解】
    解:添加条件为:AB=CD(答案不唯一);理由如下:
    ∵AB∥DC,AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴AD=BC.
    故答案为AB=CD(答案不唯一).
    本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
    10、1
    【解析】
    根据分式的加法法则运算即可.
    【详解】
    原式====1,
    故答案为1.
    本题考查了分式的加法,分母相同分子相加是解决本题的重点.
    11、86, 1
    【解析】
    根据众数和中位数的定义求解可得.
    【详解】
    由表可知,这6为同学的成绩分别为:86、86、1、93、96,
    则众数为86,中位数为1,
    故答案为:86,1.
    此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.
    12、6
    【解析】
    先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
    【详解】
    如图,连接BO,
    ∵四边形ABCD是矩形,
    ∴DC∥AB,∠DCB=90°
    ∴∠FCO=∠EAO
    在△AOE与△COF中,
    ∴△AOE≌△COF
    ∴OE=OF,OA=OC
    ∵BF=BE
    ∴BO⊥EF,∠BOF=90°
    ∵∠BEF=2∠BAC=∠CAB+∠AOE
    ∴∠EAO=∠EOA,
    ∴EA=EO=OF=FC=2
    在Rt△BFO与Rt△BFC中
    ∴Rt△BFO≌Rt△BFC
    ∴BO=BC
    在Rt△ABC中,∵AO=OC,
    ∴BO=AO=OC=BC
    ∴△BOC是等边三角形
    ∴∠BCO=60°,∠BAC=30°
    ∴∠FEB=2∠CAB=60°,
    ∵BE=BF
    ∴EB=EF=4
    ∴AB=AE+EB=2+4=6,
    故答案为6.
    本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
    13、.
    【解析】
    如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.
    【详解】
    如图,连接BD交AC于E.
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AE=EC,
    ∵OA=2OC,AC=3,
    ∴CO=DO=2EO=1,AE=,
    ∴EO=,DE=EB=,
    ∴AD=.
    故答案为.
    本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).
    【解析】
    (1)利用点A和坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;
    (2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;
    (3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.
    【详解】
    解:(1)如图,△A1B1C1为所作;
    (2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);
    (3)△A1B1C1与△A2B2C2关于点P中心对称,如图,
    对称中心的坐标的坐标为(﹣2,﹣1).
    本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    15、(1);(2)一 ,
    【解析】
    (1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
    【详解】
    解:(1)
    =
    =
    =
    =
    (2)小刚的解法从第一步开始出现错误
    解方程
    解:方程两边乘,得
    解得
    检验:当时,.
    所以,原分式方程的解是
    故答案为:一 ,
    本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
    16、是,理由见解析.
    【解析】
    连接BD,交AC于点O,证明四边形AECF的对角线互相平分即可.
    【详解】
    四边形DEBF是平行四边形,理由如下:
    连接BD,
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,DO=BO,
    ∵AE=CF,
    ∴AO−AE=CO−CF,
    ∴EO=FO,
    又∵DO=BO,
    ∴四边形DEBF是平行四边形.
    本题考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.
    17、(1)见解析 (2)直角三角形,证明见解析
    【解析】
    (1)根据“BO绕点B顺时针旋转60°到BM”可知∠OBM=60°,OB=OM,即可证明△AOB≌△CMB,从而得到答案;
    (2)由(1)可知AO=CM,根据OB=BM,∠OBM=60°,可知△OBM为等边三角形,从而得到OB=OM,根据勾股定理的逆定理即可得到答案.
    【详解】
    (1)证明:∵BO绕点B顺时针旋转60°到BM
    ∴∠OBM=60°,OB=BM,
    ∵△ABC为等边三角形
    ∴∠ABC=60°,AB=CB
    ∴∠ABO+∠OBC=∠CBM+∠OBC=60°
    ∴∠ABO=∠CBM,
    在△AOB和△CMB中,
    ∴△AOB≌△CMB(SAS),
    ∴AO=CM.
    (2)△OMC是直角三角形;理由如下:
    ∵BO绕点B顺时针旋转60°到BM
    ∴∠OBM=60°,OB=BM,
    ∴△OBM为等边三角形
    ∴OB=OM=10
    由(1)可知OA=CM=8
    在△OMC中,OM2=100,OC2+CM2=62+82=100,
    ∴OM2=OC2+CM2,
    ∴△OMC是直角三角形.
    本题考查的是旋转的性质、等边三角形的性质与判定,全等三角形的判定和勾股定理的逆定理,能够利用全等三角形的性质与判定得出对应边和用勾股定理逆定理判定三角形的形状是解题的关键.
    18、证明:(1)见解析
    (2)见解析
    【解析】
    (1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再由AC=BD,AB=BA,根据HL得出△ABC≌△BAD,即可证出BC=AD.
    (2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.
    【详解】
    证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,
    在△ABC和△BAD中,∵ AC="BD" ,AB=BA,∠ACB=∠BDA =90°,
    ∴△ABC≌△BAD(HL).∴BC=AD.
    (2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.
    ∴△OAB是等腰三角形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.
    【详解】
    解:设可以购买x(x为整数)袋蜜枣粽子.
    ,解得: ,则她最多能买蜜枣粽子是6袋.
    故答案为:6.
    此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.
    20、
    【解析】
    根据题目中的运算法则把(m+1)※(m-1)化为,再利用异分母分式的加减运算法则计算即可.
    【详解】
    ∵x※y=-,
    ∴(m+1)※(m-1)
    =
    =
    =
    =
    故答案为:.
    本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m-1)化为是解本题的关键.
    21、.
    【解析】
    方程合并后,将x系数化为1,即可求出解.
    【详解】
    解:方程合并得:(a2+1)x=1,
    解得:x=,
    故答案为:.
    22、4cm
    【解析】
    在▱ABCD中
    ∵BC=AD=6cm,AO=CO,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴AC==8cm,
    ∴AO=AC=4cm;
    故答案为4cm.
    23、150°
    【解析】
    首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
    【详解】
    解:连接PQ,
    由题意可知△ABP≌△CBQ
    则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ABP+∠PBC=60°,
    ∴∠PBQ=∠CBQ+∠PBC=60°,
    ∴△BPQ为等边三角形,
    ∴PQ=PB=BQ=4,
    又∵PQ=4,PC=5,QC=3,
    ∴PQ2+QC2=PC2,
    ∴∠PQC=90°,
    ∵△BPQ为等边三角形,
    ∴∠BQP=60°,
    ∴∠BQC=∠BQP+∠PQC=150°
    ∴∠APB=∠BQC=150°
    本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:
    【解析】
    几何背景:由 Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.
    知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.
    拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.
    【详解】
    解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1
    Rt△ACD中,AD1=AC1﹣CD1,
    ∴AB1﹣BD1=AC1﹣CD1,
    ∴AB1﹣AC1=BD1﹣CD1.
    知识迁移:BP1﹣PC1 =BF1﹣CF1.
    如 图:
    过P点作PE⊥AD,延长EP交BC于F
    ∴四边形ABCD是矩形
    ∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
    又∵PE⊥AD
    ∴PF⊥BC
    ∵PE是△APD的高
    ∴PA1﹣PD1=AE1﹣DE1.
    ∵PF是△PBC的高
    ∴BP1﹣PC1 =BF1﹣CF1.
    ∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
    ∴四边形ABFE,四边形DCFE是矩形
    ∴AE=BF,CF=DE
    ∴PA1﹣PD1=BP1﹣PC1.
    拓展应用:∵PA1﹣PD1=BP1﹣PC1.
    ∴PA1﹣PB1=c1.
    ∴PD1﹣PC1=c1.
    且PD1+PC1=c1.
    ∴PD=c,PC=c
    ∴,
    故答案为.
    本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
    25、(1)见解析;(2)见解析;(3)(4,﹣2),(1,﹣3).
    【解析】
    (1)分别画出A、B、C的对应点A1,B1,C1即可
    (2)分别画出A、B、C的对应点A2, B2, C2即可
    (3)根据B2, C2的位置写出坐标即可;
    【详解】
    解:(1)的△A1B1C1如图所示.
    (2)的△A2B2C2如图所示.
    (3)B2(4,﹣2),C2(1,﹣3),
    故答案为(4,﹣2),(1,﹣3).
    此题考查作图-旋转变换和平移变换,掌握作图法则是解题关键
    26、-2<x≤3,数轴上表示见解析.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解: ,
    解①得,x>-2,
    解②得,x≤3,
    则不等式组的解集为-2<x≤3,
    在数轴上表示为:

    故答案为:-2<x≤3,数轴上表示见解析.
    本题考查一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
    题号





    总分
    得分

    相关试卷

    陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省渭南市合阳县九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年陕西省渭南市合阳县九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map