![陕西省延安市名校2024-2025学年数学九上开学综合测试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16291890/0-1729905085747/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省延安市名校2024-2025学年数学九上开学综合测试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16291890/0-1729905085790/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省延安市名校2024-2025学年数学九上开学综合测试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16291890/0-1729905085811/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
陕西省延安市名校2024-2025学年数学九上开学综合测试试题【含答案】
展开
这是一份陕西省延安市名校2024-2025学年数学九上开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,在反比例函数图象上的点是
A.B.C.D.
2、(4分)若一个三角形各边的长度都扩大2倍,则扩大后的三角形各角的度数都( )
A.缩小2倍B.不变C.扩大2倍D.扩大4倍
3、(4分)一个五边形的内角和为( )
A.540° B.450° C.360° D.180°
4、(4分)若a>b,则下列式子正确的是()
A.a﹣4>b﹣3B.a<bC.3+2a>3+2bD.﹣3a>﹣3b
5、(4分)如图,一次函数的图象经过、两点,则不等式的解集是( )
A.B.C.D.
6、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
7、(4分)用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设( )
A.有一个内角小于60°B.每一个内角都小于60°
C.有一个内角大于60°D.每一个内角都大于60°
8、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
A.
B.
C.
D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
10、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是_________.
11、(4分)计算:__________.
12、(4分)如果a2-ka+81是完全平方式,则k=________.
13、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
三、解答题(本大题共5个小题,共48分)
14、(12分)判断代数式的值能否等于-1?并说明理由.
15、(8分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.
思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的值为______.
(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.
(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.
16、(8分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.
(1)求该反比例函数的表达式.
(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.
(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.
17、(10分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明说根据小东所得的数据可以求出CD的长度.
你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
18、(10分)先化简,再求值:(+)÷,其中x=﹣1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一元二次方程有两个不相等的实数根,则k的取值范围是 .
20、(4分)若关于x的方程有增根,则k的值为_____.
21、(4分)如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.
22、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
23、(4分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.
(1)求证:点D是AF的中点;
(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.
25、(10分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如下表:
26、(12分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.
【详解】
只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.
故选B
本题考核知识点:反比例函数的意义. 解题关键点:理解反比例函数的意义.
2、B
【解析】
由一个三角形各边的长度都扩大2倍,可得新三角形与原三角形相似,然后由相似三角形的对应角相等,求得答案.
【详解】
解:∵一个三角形各边的长度都扩大2倍,
∴新三角形与原三角形相似,
∴扩大后的三角形各角的度数都不变.
故选:B.
此题考查了相似三角形的判定与性质.注意根据题意得到新三角形与原三角形相似是解此题的关键.
3、A
【解析】【分析】直接利用多边形的内角和公式进行计算即可.
【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,
即一个五边形的内角和是540度,
故选A.
【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.
4、C
【解析】
根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.
【详解】
解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;
B、a>b⇒a>b,故B选项错误;
C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;
D、a>b⇒﹣3a<﹣3b,故D选项错误.
故选C.
考点:不等式的性质.
5、A
【解析】
由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.
【详解】
解:∵一次函数y=kx+b的图象经过A、B两点,
由图象可知:B(1,0),
根据图象当x>1时,y<0,
即:不等式kx+b<0的解集是x>1.
故选:A.
本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.
6、C
【解析】
【分析】最简二次根式: ① 被开方数不含有分母(小数);
② 被开方数中不含有可以开方开得出的因数或因式;
【详解】A. ,被开方数含有分母,本选项不能选;
B. ,被开方数中含有可以开方开得出的因数,本选项不能选;
C. 是最简二次根式;
D. ,被开方数中含有可以开方开得出的因数,本选项不能选.
故选:C
【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.
7、B
【解析】
根据反证法的第一步是假设结论不成立矩形解答即可.
【详解】
解:用反证法证明“三角形中至少有一个内角大于或等于”时,
第一步应先假设每一个内角都小于,
故选:.
本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
8、B
【解析】
由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
【详解】
解:因为,正方形ABCD与正方形EBHG的边长均为,
所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
所以,BD=,
所以,DE=BD-BE=2- ,
所以,OD=
故选B.
本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解:由平移的规律知,得到的一次函数的解析式为.
10、y=2x﹣1.
【解析】
根据两条直线平行问题得到k=2,然后把点(0,﹣1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.
【详解】
∵直线y=kx+b与直线y=2x平行,
∴k=2,
把点(0,﹣1)代入y=2x+b得
b=﹣1,
∴所求直线解析式为y=2x﹣1.
故答案为:y=2x﹣1.
考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.
11、
【解析】
先把每个二次根式化简,然后合并同类二次根式即可。
【详解】
解:原式=2-
=
本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。
12、±18.
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
∵二次三项式a2-ka+81是完全平方式,
∴k=±18,
故答案为:±18.
此题考查完全平方式,解题关键在于掌握运算法则
13、(,0).
【解析】
试题分析:∵正方形的顶点A(m,2),
∴正方形的边长为2,
∴BC=2,
而点E(n,),
∴n=2+m,即E点坐标为(2+m,),
∴k=2•m=(2+m),解得m=1,
∴E点坐标为(3,),
设直线GF的解析式为y=ax+b,
把E(3,),G(0,﹣2)代入得,
解得,
∴直线GF的解析式为y=x﹣2,
当y=0时,x﹣2=0,解得x=,
∴点F的坐标为(,0).
考点:反比例函数与一次函数的交点问题.
三、解答题(本大题共5个小题,共48分)
14、不能,理由见解析
【解析】
先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.
【详解】
原式= .
当 =−1时,解得:a=0,
∵(a+1)(a−1)a≠0,即a≠±1,a≠0,
∴代数式的值不能等于−1.
此题考查分式的化简求值,解题关键在于掌握运算法则
15、(1) ;(2);(3).
【解析】
(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;
(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;
(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.
【详解】
解:(1)∵DE//BC,EF//DC,
∴四边形DCFE是平行四边形,
∴DE=CF,DC=EF,
∴BC+ED=BC+CF=BF,
∵DC⊥BE,DC//EF,
∴∠BEF=90°,在Rt△BEF中,
∵BE=5,EF=DC=3,
∴BF==.
故BC+DE=.
(2)做CE//DB,交AB延长线于点E,
由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,
在△DAB和△CBA中 ,
∴△DAB△CBA(SAS),
∴DB=AC,
∵四边形DBEC是平行四边形,DB=CE,
∴AC=CE,
∵AC⊥DB,
∴AC⊥CE,
∴△ACE是等腰直角三角形,
∵AE=AB+BE=AB+DC=5+3=8,
∴AC=,求得AC=.
故AC的长为.
(3)AC=DF;
证明:连接AE、CE,如图,
∵四边形ABCD是平行四边形,
∴AB//DC,
∵四边形ABEF是矩形,
∴AB//FE,BF=AE,
∴DC//FE,
∴四边形DCEF为平行四边形,
∴CE=DF,
∵四边形ABEF是矩形,
∴BF=AE,
∵BF=DF,
∴DF=CE,
∴AF=BE,
∵四边形ABCD是平行四边形,
∴AD=BC,
在△FAD和△EBC中 ,
∴△FAD△EBC(SSS),
∴∠AFD=∠BEC,
∴∠FEB=∠EFA=90°,
∵∠EBF=60°,∠BFD=30°,
∴∠DFA=90°-30°-(90°-60°)=30°,
∴∠CEB=30°,
∴OE=OB,
∵∠EBF=60°,
∴∠BEA=∠EBF=60°,
∴∠AEC=60°+30°=90°,
即△AEC是等腰直角三角形,
∴AC=CE,
∵DF=CE,
∴AC=DF.
故AC与DF之间的数量关系是AC=DF.
本题考查几何的综合,难度偏高,涉及的知识点有三角形、四边形、平行线等,熟练掌握以上知识点的综合运用是顺利解题的关键.
16、 (1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8
【解析】
根据题意可得,可得C点坐标,则可求反比例函数解析式
根据题意可得D点坐标,代入解析式可得结论.
由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.
【详解】
解:(1)∵ABOC是平行四边形
∴AC=BO=6
∴C(4,4)
∵反比例函数y=(x>0)的图象经过点C.
∴4=
∴k=16
∴反比例函数解析式y=
(2)∵点A(10,4),点B(6,0),
∴AB的中点D(8,2)
当x=8时,y==2
∴D点在反比例函数图象上.
(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴
设P(a,)
S△COD=S▱ABOC﹣S△ACD﹣S△OBD
∴S△COD=S▱ABOC=12
∵S△POC<S△COD
∴,
∴a>2或a<﹣8(舍去)
当点P在OC的下方,则易得4<a<8
综上所述:2<a<4或4<a<8
本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几何意义,平行四边形的性质,设,根据题意列出关于a的不等式是本题关键.
17、同意,CD=13 m.
【解析】
直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
【详解】
同意
连接BD,如图
∵AB=AD=5(m),∠A=60°
∴△ABD是等边三角形
∴BD=AB=5(m),∠ABD=60°
∴∠ABC=150°,
∴∠CBD=∠ABC-∠ABD=150°-60°=90°
在Rt△CBD中,BD=5(m),BC=12(m),
∴(m)
答:CD的长度为13m.
此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
18、-5.
【解析】
括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.
【详解】
(+)÷
=
=
=,
当x=-1时,原式=-2-3=-5.
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、:k<1.
【解析】
∵一元二次方程有两个不相等的实数根,
∴△==4﹣4k>0,
解得:k<1,
则k的取值范围是:k<1.
故答案为k<1.
20、1
【解析】
方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.
【详解】
解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,
∵方程有增根,
∴x=1或x=﹣1,
当x=1时,2k=6,k=1;
当x=﹣1时,﹣4=6,显然不成立;
∴k=1,
故答案为1.
本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.
21、(5,4)
【解析】
由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).
故答案为(5,4).
22、2
【解析】
由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
【详解】
由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
设AB= x,则AF=x ,AC=x+1.
∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
∵ABCD是矩形,∴CD=AB=2.
故答案为:2.
本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
23、1
【解析】
先设最多降价x元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.
解:设最多降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤1.
故该店最多降价1元出售该商品.
“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)AE⊥BF,理由见解析.
【解析】
(1)根据平行四边形的性质可得AD∥BC,AD=BC,然后利用AAS即可证出BC=DF,从而得出AD=DF,即可证出结论;
(2)根据全等三角形的性质可得BE=EF,然后证出AB=AF,利用三线合一即可得出结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠CBE=∠F,
∵点E为CD的中点,
∴CE=DE,
在△BCE和△FDE中,
,
∴△BCE≌△FDE(AAS),
∴BC=DF,
∴AD=DF,
即点D是AF的中点;
(2)∵△BCE≌△FDE,
∴BE=EF,
∵AB=2BC,BC=AD,AD=DF,
∴AB=AF,
∴AE⊥BF.
此题考查的是平行四边形的性质、全等三角形的判定及性质和等腰三角形的性质,掌握平行四边形的性质、全等三角形的判定及性质和三线合一是解决此题的关键.
25、(1)2000;(2)A型车17辆,B型车33辆
【解析】
试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.
(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.
试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,
根据题意得, 解之得x=1600, 经检验,x=1600是方程的解.
答:今年A型车每辆2000元.
(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m
解之得m≥, ∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,
∴y随m 的增大而减小, ∴当m=17时,可以获得最大利润.
答:进货方案是A型车17辆,B型车33辆.
考点:(1)一次函数的应用;(2)分式方程
26、80 120
【解析】
(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
【详解】
(1)设慢车的速度为akm/h,快车的速度为bkm/h,
根据题意,得 ,解得 ,
故答案为80,120;
(2)图中点C的实际意义是:快车到达乙地;
∵快车走完全程所需时间为720÷120=6(h),
∴点C的横坐标为6,
纵坐标为(80+120)×(6﹣3.6)=480,
即点C(6,480);
(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
即相遇前:(80+120)x=720﹣500,
解得x=1.1,
相遇后:∵点C(6,480),
∴慢车行驶20km两车之间的距离为500km,
∵慢车行驶20km需要的时间是=0.25(h),
∴x=6+0.25=6.25(h),
故x=1.1 h或6.25 h,两车之间的距离为500km.
考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
题号
一
二
三
四
五
总分
得分
A型车
B型车
进货价格(元/辆)
1100
1400
销售价格(元/辆)
今年的销售价格
2400
相关试卷
这是一份陕西省延安市延长县2024-2025学年九上数学开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省延安市2024-2025学年数学九上开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安新城区七校联考2024-2025学年九上数学开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。