|试卷下载
终身会员
搜索
    上传资料 赚现金
    陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】01
    陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】02
    陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】

    展开
    这是一份陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)使二次根式的有意义的x的取值范围是( )
    A.B.C.D.
    2、(4分)如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为( )
    (精确到.参考数据:)
    A.B.C.D.
    3、(4分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( )
    A.B.C.D.
    4、(4分)历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的直角边在同一条直线上.证明中用到的面积相等关系是( )
    A.B.
    C.D.
    5、(4分)设函数(≠0)的图象如图所示,若,则关于的函数图象可能为( )
    A.B.C.D.
    6、(4分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是( )
    A.B.C.D.
    7、(4分)在平面直角坐标系中,点到原点的距离是( )
    A.B.C.D.
    8、(4分)如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6 cm,则△DEB的周长为( )
    A.12 cmB.8 cmC.6 cmD.4 cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.
    10、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
    11、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
    12、(4分)若函数y=(a-3)x|a|-2+2a+1是一次函数,则a=.
    13、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
    (1)如图①,点D、E分别在线段AB、AC上. 请直接写出线段BD和CE的位置关系: ;
    (2)将图①中的△ADE绕点A逆时针旋转到如图②的位置时,(1)中的结论是否成立?若成立,请利用图②证明;若不成立,请说明理由;
    (3)如图③,取BC的中点F,连接AF,当点D落在线段BC上时,发现AD恰好平分∠BAF,此时在线段AB上取一点H,使BH=2DF,连接HD,猜想线段HD与BC的位置关系并证明.
    15、(8分)解不等式组:.
    16、(8分)如果一组数据1,2,2,4,的平均数为1.
    (1)求的值;
    (2)求这组数据的众数.
    17、(10分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.
    (1)如图1,若k=1,求线段AB的长;
    (2)如图2,点C与点A关于y轴对称,作射线BC;
    ①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;
    ② y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围
    18、(10分)化简与计算:
    (1);
    (2)﹣x﹣1;
    (3).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:
    请你根据表中数据选一人参加比赛,最合适的人选是________.
    20、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
    21、(4分)如图,点是的对称中心, ,是边上的点,且是边上的点,且,若分别表示和的面积则.
    22、(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是 度.
    23、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)申遗成功后的杭州,在国庆黄金周旅游市场中的知名餐饮受游客追捧,西湖景区附近的A,B两家餐饮店在这一周内的日营业额如下表:
    (1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量;
    (2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这两个方差的大小反映了什么?(结果精确到0.1)
    (3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由.
    25、(10分)阅读下面材料:数学课上,老师出示了这祥一个问题:
    如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
    小柏:“通过观察和度量,发现点H是线段EF的中点”。
    小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
    小亮:“通过观察和度量,发现CO⊥BD”;
    小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
    小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
    老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
    请回答:(1)证明FH=EH;
    (2)求的值;
    (3)若AB=4.MH=,则GE的长度为_____________.
    26、(12分)如图,中,平分,的垂直平分线分别交、、于点、、,连接、.
    (1)求证:四边形是菱形;
    (2)若,,,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:要使有意义,必须,解得:.故选C.
    考点:二次根式有意义的条件.
    2、D
    【解析】
    过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.
    【详解】
    过D作DE⊥AB于点E,

    ∵在D处测得旗杆顶端A的仰角为60°,
    ∴∠ADE=60°.
    ∴∠DAE=30°.
    ∵BC=DE=5m,
    AD=2DE=10
    ∴,
    ∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.
    故答案为:D
    本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.
    3、B
    【解析】
    根据中心对称图形的概念解答即可.
    【详解】
    选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.
    故选B.
    本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.
    4、D
    【解析】
    用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.
    【详解】
    解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.
    可知ab+c2+ab=(a+b)2,
    ∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,
    ∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.
    故选D.
    本题考查勾股定理的证明依据.此类证明要转化成该图形面积的两种表示方法,从而转化成方程达到证明的结果.
    5、D
    【解析】
    根据反比例函数解析式以及,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>1,结合x的取值范围即可得出结论.
    【详解】
    ∵(k≠1,x>1),
    ∴(k≠1,x>1).
    ∵反比例函数(k≠1,x>1)的图象在第一象限,
    ∴k>1,
    ∴>1.
    ∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.
    故选D.
    本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.
    6、B
    【解析】
    若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.
    【详解】
    A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;
    B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;
    C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;
    D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.
    故选B.
    本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
    7、C
    【解析】
    根据勾股定理可求点到原点的距离.
    【详解】
    解:点到原点的距离为:;
    故选:C.
    本题考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.
    8、C
    【解析】
    ∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.
    ∴DE=DC,
    ∴AE=AC=BC,
    ∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6 cm.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、四
    【解析】
    根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.
    【详解】
    解:∵一元二次方程的两个实数根分别是a、b,
    ∴a+b=1,ab=4,
    ∴一次函数的解析式为y=4x+1.
    ∵4>0,1>0,
    ∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,
    故答案为:四.
    本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.
    10、1
    【解析】
    试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
    试题解析:∵CE∥BD,DE∥AC,
    ∴四边形CODE是平行四边形,
    ∵四边形ABCD是矩形,
    ∴AC=BD=4,OA=OC,OB=OD,
    ∴OD=OC=AC=2,
    ∴四边形CODE是菱形,
    ∴四边形CODE的周长为:4OC=4×2=1.
    考点: 1.菱形的判定与性质;2.矩形的性质.
    11、72
    【解析】
    根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
    【详解】
    解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
    ∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
    ∴∠AFE=∠D=90°,AD=AF,
    ∵∠EFC+∠AFB=180°-90°=90°,
    ∠BAF+∠AFB=90°,
    ∴∠BAF=∠EFC,
    ∵,
    ∴设CE=3k,CF=4k,
    ∴,
    ∵∠BAF=∠EFC,且∠B=∠C=90°
    ∴△ABF∽△FCE,
    ∴,即,
    ∴BF=6k,
    ∴BC=BF+CF=10k=AD,
    ∵AE2=AD2+DE2,
    ∴500=100k2+25k2,
    ∴k=2
    ∴AB=CD =16cm,BC=AD=20cm,
    ∴四边形ABCD的周长=72cm
    故答案为:72.
    本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
    12、-1.
    【解析】
    ∵函数y=(a-1)x|a|-2+2a+1是一次函数,
    ∴a=±1,
    又∵a≠1,
    ∴a=-1.
    13、1260
    【解析】
    首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.
    【详解】
    解:∵多边形的每一个外角都等于,
    ∴它的边数为:,
    ∴它的内角和:,
    故答案为:.
    此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)BD⊥CE;(2)成立,理由见解析;(3)HD⊥BC,证明见解析;
    【解析】
    (1)根据等腰直角三角形的性质解答;(2)延长延长BD、CE,交于点M,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;(3)过点D作DN⊥AB于点N,根据题意判定△NDH是等腰直角三角形,从而使问题得解.
    【详解】
    解:(1)∵△ABC和△ADE都是等腰直角三角形且点D、E分别在线段AB、AC上,
    ∴BD⊥CE;
    (2)成立
    证明:延长BD、CE,交于点M
    ∵∠BAC=∠DAE=90°
    ∴∠BAC-∠DAC =∠DAE-∠DAC
    即∠BAD=∠CAE
    又∵AB=AC,AD=AE
    ∴△ABD≌△ACE(SAS)
    ∴∠ABD=∠ACE
    在等腰直角△ABC中,∠ABD +∠DBC+∠ACB=90°
    ∴∠ACE +∠DBC+∠ACB=90°
    ∴在△MBC中,∠M=180°-(∠ACE +∠DBC+∠ACB)= 90°
    ∴BD⊥CE
    (3)HD⊥BC
    证明:过点D作DN⊥AB于点N.
    ∵AB=AC,BF=CF,
    ∴AF⊥BC
    又∵AD平分∠BAF,且DN⊥AB
    ∴DN=DF
    在Rt△BND中,∠B=45°
    ∴∠NDB=45°,NB=ND
    ∴NB=DF
    ∵BH=2DF
    ∴BH=2NB
    而BH=NB+NH
    ∴NB=NH=ND
    ∴△NDH是等腰直角三角形,∠NDH=45°
    ∴∠HDB=∠NDH +∠NDB= 45°+ 45°=90°
    ∴HD⊥BC
    本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.
    15、2<x≤1
    【解析】
    分别计算出各不等式的解集,再求出其公共解集即可.
    【详解】
    解:解①得:x>2
    解②得:x≤1
    不等式组的解集是2<x≤1.
    本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    16、(1);(2)2和4.
    【解析】
    (1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;
    (2)根据众数的定义即可求出答案.
    【详解】
    解:(1)由平均数为1,得,
    解得:.
    (2)当时,这组数据是2,2,1,4,4,
    其中有两个2,也有两个4,是出现次数最多的,
    ∴这组数据的众数是2和4.
    本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.
    17、 (1) ;(2) ;(3)四边形ABCD为菱形,-2≤k≤2且k≠1.
    【解析】
    (1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;
    (2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;
    ②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.
    【详解】
    解:(1)由题意知,将k=1代入y=kx-3,
    即直线AB的解析式为:y=x-3,
    令x=1,求出B点坐标为(1,-3),故OB=3,
    令y=1,求出A点坐标为(3,1),故OA=3,
    在Rt△AOB中,由勾股定理有:,
    故答案为:;
    (2)①当k=3时,直线AB的解析式为:y=3x-3,
    令y=1,则x=1,求出点A的坐标为(1,1),
    令x=1,则y=-3,求出点B的坐标为(1,-3),
    ∵点C与点A关于y轴对称,故点C(-1,1),
    设直线BC的解析式为:,代入B、C两点坐标:
    ,解得,故直线BC的解析式为:,
    ∴以射线BA和射线BC所组成的图形为函数图像的函数解析式为:,
    故答案为:;
    ②四边形ABCD为菱形,理由如下:
    ∵点B(1,-3),点D(1,3),故OB=OD,
    ∵点C与点A关于y轴对称,
    ∴OA=OC,
    由对角线互相平分的四边形是平行四边形知,四边形ABCD为平行四边形,
    又∵AC⊥BD,
    故四边形ABCD为菱形;
    令y=kx-3中y=1,解得,∴A(,1),则点C(,1),
    则AC=,
    ∴菱形ABCD的面积为,
    解得:且,
    故答案为:且.
    本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、面积的计算等,综合性强,难度适中,熟练掌握一次函数的图像和性质及菱形的性质和判定是解决本题的关键.
    18、(1)﹣x﹣1;(2);(3)6﹣18.
    【解析】
    (1)先把除法运算化为乘法运算,然后把x2+x分解后约分即可;
    (2)先进行通分,然后进行同分母的分式的减法运算;
    (3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.
    【详解】
    (1)原式=﹣•x(x+1)
    =﹣x﹣1;
    (2)原式=

    =;
    (3)原式=(﹣2﹣)•2
    =(﹣3)•2
    =6﹣18.
    本题考查了分式的混合运算,二次根式的混合运算,熟练掌握相关运算的运算法则是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、丙
    【解析】
    分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    详解:∵=5.1, =4.7, =4.5,=5.1,
    ∴=>>,
    ∴最合适的人选是丙.
    故答案为:丙.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、(-3,-1)
    【解析】
    根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
    【详解】
    解:∵点Q与点P(3,﹣1)关于y轴对称,
    ∴Q(-3,-1).
    故答案为:(-3,-1).
    本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
    21、
    【解析】
    根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC= ,从而得出S1与S2之间的等量关系.
    【详解】
    解:由题意可得
    ∵点O是▱ABCD的对称中心,
    ∴S△AOB=S△BOC= ,
    故答案为:
    本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.
    22、144
    【解析】
    连接OE,
    ∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,
    ∴点E,A,B,C共圆,
    ∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,
    ∴点E在量角器上对应的读数是:144°,
    故答案为144.
    23、1
    【解析】
    利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.
    【详解】
    解:x2-5x+4=0,
    (x-1)(x-4)=0,
    所以x1=1,x2=4,
    当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
    当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
    故答案是:1.
    本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)选择平均数,A店的日营业额的平均值是2.5百万元,B店的日营业额的平均值是2.5百万元;(2)A组新数据的方差约为1.1,B组新数据的方差约为1.6;(3)答案见解析.
    【解析】
    试题分析:(1)在数据差别不是很大的情况下评价平均水平一般采用平均数;
    (2)分别用每一个数据减去其平均数,得到新数据后计算其方差后比较即可;
    (3)用今年的数据大体反映明年的数据即可.
    解:(1)选择平均数.
    A店的日营业额的平均值是×(1+1.6+3.5+4+2.7+2.5+2.2)=2.5(百万元),
    B店的日营业额的平均值是×(1.9+1.9+2.7+3.8+3.2+2.1+1.9)=2.5(百万元).
    (2)1.6,1.9,1.5,-1.3,-1.2,-1.3;
    B组数据的新数为
    1,1.8,1.1,-1.6,-1.1,-1.2,
    ∴A组新数据的平均数
    xA=×(1.6+1.9+1.5-1.3-1.2-1.3)
    =1.2(百万元),
    B组新数据的平均数
    xB=×(1+1.8+1.1-1.6-1.1-1.2)
    =1(百万元).
    ∴A组新数据的方差s=×[(1.2-1.6)2+(1.2-1.9)2+(1.2-1.5)2+(1.2+1.3)2+(1.2+1.2)2+(1.2+1.3)2]≈1.1,
    B组新数据的方差
    s=×(12+1.82+1.12+1.62+1.12+1.22)
    ≈1.6.
    这两个方差的大小反映了A,B两家餐饮店相邻两天的日营业额的变化情况,并且B餐饮店相邻两天的日营业额的变化情况比较小.
    (3)观察今年黄金周的数据发现今年的3号、4号、5号营业额较高,故明年的3号、4号、5号营业额可能较高.
    点睛:本题考查了算术平均数和方差的计算,算术平均数的计算公式是:,方差的计算公式为:,根据公式求解即可.
    25、(1)见解析;(2) ;(3)
    【解析】
    (1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
    (2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
    (3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
    【详解】
    (1)如图1,
    连接DE,DF
    ∵正方形ABCD
    ∴AD=CD=CB=AB
    ∠A=∠ADC=∠BCD=∠ABC=90°
    ∴∠DCE=∠A=90°
    ∴在ΔFAD和ΔECD中
    ∴ΔDAF≌ΔDCE(SAS)
    ∴DF=DE
    ∵DH⊥EF
    ∴FH=EH
    (2)如图2,连接BH,
    ∵ΔFAD≌ΔECD
    ∴∠ADF=∠CDE
    ∵∠ADC=90°=∠ADF+∠FDC
    ∴∠EDC+∠FDC=90°
    ∴∠FDE=90°
    ∴DH=EF=EH=FH
    ∵∠FBC=90°
    ∴BH=EF=EH=FH
    ∴BH=DH
    ∴在ΔBHC和ΔDHC中
    ∴ΔBHC≌ΔDHC(SSS)
    ∴∠BCH=∠DCH
    ∴OC⊥BD
    ∴∠HOB=90°
    ∵BH=FH,∠BFE =75°
    ∴∠FBH=∠BFH=75°
    ∵正方形ABCD
    ∴∠ABD=45°,∠HBO=30°
    ∴OH=BH
    ∴;
    (3)解:如图3,连接OA,作MK⊥OA于K.
    由(2)可知:A,O,C共线,
    ∴∠MAK=45°,
    ∵AM=MB=2,
    ∵CG∥AB,

    由△EHG∽△BCG,可得
    本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    26、(1)详见解析;(2)
    【解析】
    (1)根据平分,得到,再根据垂直平分,得到,,从而得到,故,,从而证明四边形是平行四边形,再根据证明四边形是菱形;
    (2)过点作,由(1)知,,得到,且,得到,由,得到,故由进行求解.
    【详解】
    解:(1)证明:∵平分,∴,
    ∵垂直平分,∴,,
    ∴,,
    ∴,
    ∴,,
    ∴四边形是平行四边形,
    又∵,
    ∴四边形是菱形;
    (2)如图,过点作,
    由(1)知∴,,
    ∴,且,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴.
    此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.
    题号





    总分
    得分




    平均数/环
    9.5
    9.5
    9.5
    9.5
    方差/环2
    5.1
    4.7
    4.5
    5.1
    相关试卷

    陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】: 这是一份陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份陕西省西安市工大附中2024-2025学年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map