陕西省西安市远东第一中学2023-2024学年九上数学期末综合测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知点在同一个函数的图象上,这个函数可能是( )
A.B.C.D.
2.方程的解是( )
A.B.C.,D.,
3.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30°B.15°C.10°D.20°
4.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )
A.B.
C.D.
5.关于反比例函数y=﹣,下列说法错误的是( )
A.图象经过点(1,﹣3)
B.图象分布在第一、三象限
C.图象关于原点对称
D.图象与坐标轴没有交点
6.下列说法,错误的是( )
A.为了解一种灯泡的使用寿命,宜采用普查的方法
B.一组数据8,8,7,10,6,8,9的众数是8
C.方差反映了一组数据与其平均数的偏离程度
D.对于简单随机样本,可以用样本的方差去估计总体的方差
7.若点,是函数上两点,则当时,函数值为( )
A.2B.3C.5D.10
8.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )
A.AC∥ODB.
C.△ODE∽△ADOD.
9.四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为( )
A.1B.C.D.
10.如图,在平面直角坐标系中,点的坐标为,那么的值是( )
A.B.C.D.
11.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是
A.B.C.D.
12.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为( )
A.1B.C.D.2
二、填空题(每题4分,共24分)
13.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为 ________.
14.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.
15.如图,若点A的坐标为(1,),则∠1的度数为_____.
16.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)
17.二次函数(a,b,c为常数且a≠0)中的与的部分对应值如下表:
现给出如下四个结论:①;② 当时,的值随值的增大而减小;③是方程的一个根;④当时,,其中正确结论的序号为:____.
18.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系xy中,直线与轴,轴分别交于点A和点B.抛物线经过A,B两点,且对称轴为直线,抛物线与轴的另一交点为点C.
(1)求抛物线的函数表达式;
(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S;
抛物线上是否还存在其它点M,使△ABM的面积等于中的最大值S,若存在,求出满足条件的点M的坐标;若不存在,说明理由;
(3)若点F为线段OB上一动点,直接写出的最小值.
20.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交 线段CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在 个满足题意的点.
21.(8分)(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是 .
①;
②线段AB绕C点旋转180°后,得到线段A'B';
③;
④C是线段BB'的中点.
在第(1)问的启发下解答下面问题:
(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)
(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.
22.(10分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.
(1)建立函数模型.
设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第 象限内交点的坐标.
(2)画出函数图象.
函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.
(3)平移直线y=﹣x,观察函数图象.
①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为 ;
②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
面积为9的矩形,它的周长m的取值范围为 .
23.(10分)计算:
解方程:
24.(10分)如图,已知三个顶点的坐标分别为,,
(1)请在网格中,画出线段关于原点对称的线段;
(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;
(3)若另有一点,连接,则 .
25.(12分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
26.(12分)已知抛物线的图象经过点(﹣1,0),点(3,0);
(1)求抛物线函数解析式;(2)求函数的顶点坐标.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、B
4、C
5、B
6、A
7、B
8、A
9、B
10、D
11、C
12、C
二、填空题(每题4分,共24分)
13、
14、7.1
15、60°.
16、>
17、①②③④
18、4π.
三、解答题(共78分)
19、(1);(2)E(-2,-4),4;②存在,;(3)
20、(1)(2)当时,的长最大(3)
21、(1)①②③④;(2);(3),证明见解析
22、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1; 2个交点时,m>1;(4)m≥1.
23、(1);(2),
24、(1)见解析;(2)见解析,;(3)1.
25、20米
26、 (1)y=x2﹣2x﹣3;(2)(1,-4)
0
1
3
3
5
3
陕西省西安市78中学2023-2024学年九上数学期末调研试题含答案: 这是一份陕西省西安市78中学2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了如图,在中,等内容,欢迎下载使用。
陕西省西安市长安中学2023-2024学年九上数学期末调研试题含答案: 这是一份陕西省西安市长安中学2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,学校要组织足球比赛等内容,欢迎下载使用。
陕西省西安市航天中学2023-2024学年九上数学期末经典模拟试题含答案: 这是一份陕西省西安市航天中学2023-2024学年九上数学期末经典模拟试题含答案,共7页。试卷主要包含了如图,△OAB∽△OCD,OA等内容,欢迎下载使用。