|试卷下载
终身会员
搜索
    上传资料 赚现金
    山西省运城2024-2025学年数学九上开学复习检测试题【含答案】
    立即下载
    加入资料篮
    山西省运城2024-2025学年数学九上开学复习检测试题【含答案】01
    山西省运城2024-2025学年数学九上开学复习检测试题【含答案】02
    山西省运城2024-2025学年数学九上开学复习检测试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省运城2024-2025学年数学九上开学复习检测试题【含答案】

    展开
    这是一份山西省运城2024-2025学年数学九上开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A.B.C.D.
    2、(4分)下列各点中,在第四象限的点是( )
    A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣2,3)
    3、(4分)用配方法解方程x2﹣2x﹣1=0,原方程应变形为( )
    A.(x﹣1)2=2 B.(x+1)2=2 C.(x﹣1)2=1 D.(x+1)2=1
    4、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是( )
    A.B.C.D.
    5、(4分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是( )
    A.2B.3C.D.5
    6、(4分)若正多边形的一个外角是,则该正多边形的内角和为( )
    A.B.C.D.
    7、(4分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若、、、对应的邻补角和等于,则的度数为( )
    A.B.C.D.
    8、(4分)如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为( )
    A.10 cm2B.12 cm2C.15 cm2D.17 cm2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.则线段B′C= .
    10、(4分)已知,则代数式的值为_____.
    11、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).
    12、(4分)已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.
    13、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象交于点.

    (1)求一次函数的解析式;
    (2)点在轴上,当最小时,求出点的坐标;
    (3)若点是直线上一点,点是平面内一点,以、、、四点为顶点的四边形是矩形,请直接写出点的坐标.
    15、(8分)如图,在中,.
    用圆规和直尺在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
    当满足的点P到AB、BC的距离相等时,求的度数.
    16、(8分) (1)解方程:﹣=1
    (2)先化简,再求值:÷(﹣x﹣2),其中x=﹣2
    17、(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.
    18、(10分)如图,矩形 ABCD 中,AB  4, BC  10, E 在 AD 上,连接 BE, CE, 过点 A 作 AG // CE ,分别交 BC, BE 于点 G, F , 连接 DG 交 CE 于点 H .若 AE  2, 求证:四边形 EFGH 是矩形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
    20、(4分)已知是分式方程的根,那么实数的值是__________.
    21、(4分)如图,一次函数的图象经过点,则关于的一元一次方程的解为___________.
    22、(4分)如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.
    23、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知a、b、c满足(a﹣3)2|c﹣5|=1.
    求:(1)a、b、c的值;
    (2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
    25、(10分)解方程:
    (1)
    (2)
    26、(12分)如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
    (1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
    (2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、C
    【解析】
    根据第四象限的点的横坐标是正数,纵坐标是负数解答.
    【详解】
    解:纵观各选项,第四象限的点是(2,﹣3).
    故选:C.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、A
    【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.
    详解:x1﹣1x=1,
    x1﹣1x +1=1,
    (x﹣1)1=1.
    故选A.
    点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    4、A
    【解析】
    根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解.
    【详解】
    根据三角形的平行线定理,可得
    A选项,,错误;
    B选项,,正确;
    C选项,,正确;
    D选项,,正确;
    故答案为A.
    此题主要考查三角形的平行线定理,熟练掌握,即可解题.
    5、C
    【解析】
    根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:∵AC=4cm,BC=3,
    ∴AB= = ,
    ∵D为斜边AB的中点,
    ∴CD=AB=×5= .
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.
    6、C
    【解析】
    根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.
    【详解】
    由题意,正多边形的边数为,
    其内角和为.
    故选C.
    考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.
    7、C
    【解析】
    由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和,可求得五边形OAGFE的内角和,则可求得∠BOD.
    【详解】
    解:∵∠1、∠2、∠3、∠4的外角的角度和为225°,
    ∴∠1+∠2+∠3+∠4+225°=4×180°,
    ∴∠1+∠2+∠3+∠4=495°,
    ∵五边形OAGFE内角和=(5-2)×180°=540°,
    ∴∠1+∠2+∠3+∠4+∠BOD=540°,
    ∴∠BOD=540°-495°=45°,
    故选:C.
    本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
    8、C
    【解析】
    解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,
    ∴AC∥AC1,B1C=B1C1,
    ∴△B1DC∽△B1A1C1,
    ∵△B1DC与△B1A1C1的面积比为1:4,
    ∴四边形A1DCC1的面积是△ABC的面积的,
    ∴四边形A1DCC1的面积是:cm2,
    故选C
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    试题解析:连接BB′交AE于点O,如图所示:
    由折线法及点E是BC的中点,∴EB=EB′=EC,
    ∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;
    又∵△BB'C三内角之和为180°,
    ∴∠BB'C=90°;
    ∵点B′是点B关于直线AE的对称点,
    ∴AE垂直平分BB′;
    在Rt△AOB和Rt△BOE中,BO2=AB2-AO2=BE2-(AE-AO)2
    将AB=4,BE=3,AE==5代入,得AO=cm;
    ∴BO=,
    ∴BB′=2BO=cm,
    ∴在Rt△BB'C中,B′C=cm.
    考点:翻折变换(折叠问题).
    10、3
    【解析】
    把已知值代入,根据二次根式的性质计算化简,灵活运用完全平方公式.
    【详解】
    解:因为
    所以
    二次根式的化简求值.
    11、<
    【解析】
    先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
    【详解】
    ∵直线y=1018x-1019,k=1018>0,
    ∴y随x的增大而增大,
    又∵x1<x1+1,
    ∴y1<y1.
    故答案为:<.
    本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    12、9
    【解析】
    用总频数减去各组已知频数可得.
    【详解】
    第三组频数是40-10-8-7-6=9
    故答案为:9
    考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.
    13、
    【解析】
    根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
    【详解】
    连接AP,
    四边形AFPE是矩形,
    要使EF最小,只要AP最小即可,
    过点A作于P,此时AP最小,
    在直角三角形中,
    由勾股定理得:BC=5,
    由三角形面积公式得:
    ,
    即,
    故答案为:.
    本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2);(3)或(,).
    【解析】
    (1)由A、C坐标,利用待定系数法可求得答案;
    (2)由一次函数解析式可求得B点坐标,可求得B点关于x轴的对称点B′的坐标,连接B′C与x轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标;
    (3)分两种情形分别讨论:①当OC为边时,四边形OCFE是矩形,此时EO⊥OC;②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC;分别求出E和E’的坐标,然后根据矩形的性质和坐标间的位置关系即可得到点的坐标.
    【详解】
    解:(1)∵一次函数y=mx+n(m≠0)的图象经过点A(−3,0),点C(3,6),
    ∴,解得,
    ∴一次函数的解析式为y=x+3;
    (2)如图,作点B关于x轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.
    ∵B(0,3),C(3,6)
    ∴B′(0,-3),
    设直线CB′的解析式为y=kx+b(k≠0),
    则,解得:,
    ∴直线CB′的解析式为y=3x−3,
    令y=0,得x=1,
    ∴P(1,0);
    (3)如图,
    ①当OC为边时,四边形OCFE是矩形,此时EO⊥OC,
    ∵直线OC的解析式为y=2x,
    ∴直线OE的解析式为y=x,
    联立,解得,
    ∴E(−2,1),
    ∵EO=CF,OE∥CF,
    根据坐标之间的位置关系易得:F(1,7);
    ②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC,
    ∴直线OE′的解析式为y=−x,
    由,解得,
    ∴E′(,),
    ∵OE′=CF′,OE′∥CF′,
    根据坐标之间的位置关系易得:F′(,),
    综上所述,满足条件的点F的坐标为(1,7)或(,).
    本题考查一次函数综合题、轴对称最短问题、矩形的判定和性质等知识,解题的关键是学会利用对称解决最短路径问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    15、(1)图形见解析(2)30°
    【解析】
    试题分析:(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;
    (2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP≌Rt△BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.
    试题解析:
    (1)依照题意,画出图形,如图所示.
    (2)∵点P到AB、BC的距离相等,
    ∴PC=PD.
    在Rt△BCP和Rt△BDP中,

    ∴Rt△BCP≌Rt△BDP(HL),
    ∴BC=BD.
    又∵PD垂直平分AB,
    ∴AD=2BD=2BC.
    在Rt△ABC中,∠C=90°,AB=2BC,
    ∴∠A=30°.
    【点睛】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.
    16、 (1)x=2;(2);-2.
    【解析】
    (1)根据分式方程的解法即可求出答案.
    (2)根据分式的运算法则即可求出答案.
    【详解】
    (1)x(x+1)﹣3(x﹣1)=(x﹣1)(x+1)
    x2+x﹣3x+3=x2﹣1
    x=2
    经检验:x=2是原方程的根
    (2)当x=﹣2时,
    原式=÷
    =﹣×

    =﹣
    =﹣2.
    本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.
    17、见解析
    【解析】
    根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADG≌△FCG可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;
    【详解】
    证明:∵在▱ABCD中,AD∥BF.
    ∴∠ADC=∠FCD.
    ∵G为CD的中点,
    ∴DG=CG.
    在△ADG和△FCG中,

    ∴△ADG≌△FCG(ASA)
    ∴AD=FC.
    又∵AD∥FC,
    ∴四边形ACFD是平行四边形.
    此题主要考查了平行四边形的判定和性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    18、证明见解析.
    【解析】
    根据四边形是矩形以及,得到四边形是平行四边形,从而得到四边形是平行四边形,即可得到四边形是平行四边形,再根据勾股定理求出,长,由勾股定理的逆定理得到是直角三角形,即可得正.
    【详解】
    四边形是矩形,
    ,,

    四边形是平行四边形,


    四边形是平行四边形,

    四边形是平行四边形,
    ,,
    ,,

    是直角三角形,

    四边形是矩形.
    本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、、或.
    【解析】
    试题分析:∵|x2-4|≥0,,
    ∴x2-4=0,y2-5y+6=0,
    ∴x=2或-2(舍去),y=2或3,
    ①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
    ②当2,3均为直角边时,斜边为;
    ③当2为一直角边,3为斜边时,则第三边是直角,长是.
    考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
    20、1
    【解析】
    将代入到方程中即可求出m的值.
    【详解】
    解:将代入,得
    解得:
    故答案为:1.
    此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.
    21、
    【解析】
    所求方程的解,即为函数y=kx+b图象与x轴交点横坐标,确定出解即可.
    【详解】
    解:方程kx+b=0的解,即为函数y=kx+b图象与x轴交点的横坐标,
    ∵直线y=kx+b过B(-1,0),
    ∴方程kx+b=0的解是x=-1,
    故答案为:x=-1.
    此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为kx+b=0 (k,b为常数,k≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b确定它与x轴的交点的横坐标的值.
    22、60°
    【解析】
    根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.
    【详解】
    由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,
    ∴等腰梯形的较大内角为360°÷3=120°,
    ∵等腰梯形的两底平行,
    ∴等腰梯形的底角(指锐角)是:180°-120°=60°.
    故答案是:60°.
    本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.
    23、2或4
    【解析】
    根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.
    【详解】
    若绕点D顺时针旋转△AED得到△,连接,
    ∵,,
    ∴∠A=30°,
    ∵,
    ∴AB=4,
    ∵点D是AB的中点,
    ∴AD=2,
    ∵,
    ∴AD==2,∠=60°,
    ∴△是等边三角形,
    ∴=,∠D=60°,且∠EAD=30°,
    ∴AE平分∠D,
    ∴AE是的垂直平分线,
    ∴OD=AD=,
    ∵AE=DE,
    ∴∠EAD=∠EDA=30°,
    ∴DE,
    ∴2;
    若绕点D顺时针旋转△AED得到△,
    同理可求=4,
    故答案为:2或4.
    此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=2.
    【解析】
    (1)根据平方、算术平方根及绝对值的非负性即可得到答案;
    (2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.
    【详解】
    (1)∵,
    又∵(a﹣3)2≥1,,|c﹣5|≥1,
    ∴a﹣3=1,b﹣4=1,c﹣5=1,
    ∴a=3,b=4,c=5;
    (2)∵32+42=52,
    ∴此△是直角三角形,
    ∴能构成三角形,且它的周长l=3+4+5=2.
    此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.
    25、(1)原方程无解;(1)x=6或x=-1.
    【解析】
    【分析】(1)先去分母,化为整式方程,解整式方程后进行检验即可得答案;
    (1)利用因式分解法进行求解即可得.
    【详解】(1)两边同乘(x-1),得
    1=x-1-3(x-1),
    解得:x=1,
    检验:x=1时,x-1=0,
    x=1是原方程的增根,原方程无解;
    (1)因式分解,得(x-6)(x+1)=0 ,
    x-6=0或x+1=0,
    x=6或x=-1.
    【点睛】本题考查了解分式方程以及解一元二次方程,熟练掌握分式方程的解法、注意事项以及一元二次方程的解法是解题的关键.
    26、(1)证明见解析;
    (2)对补点如:N(,).证明见解析
    【解析】
    试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.
    试题解析:
    (1)
    ∵四边形ABCD是正方形,
    ∴ AC⊥BD.
    ∴ ∠DMC=∠AMB=90°.
    即 ∠DMC+∠AMB=180°.
    ∴ 点M是正方形ABCD的对补点.
    (2)对补点如:N(,).
    说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可.
    证明(方法一):
    连接AC ,BD
    由(1)得此时对角线的交点为(2,2).
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,
    可求得直线AC的解析式为:y=x.
    则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD的对补点.
    证明(方法二):
    连接AC ,BD,
    由(1)得此时对角线的交点为(2,2).
    设点N是线段AC上的一点(端点A,C及对角线交点除外),
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD除对角线交点外的对补点.
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.
    在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).
    题号





    总分
    得分
    批阅人
    相关试卷

    山西省运城2024年九上数学开学联考模拟试题【含答案】: 这是一份山西省运城2024年九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省运城市新东康中学2024-2025学年数学九上开学教学质量检测模拟试题【含答案】: 这是一份山西省运城市新东康中学2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省大同市2024-2025学年九上数学开学复习检测试题【含答案】: 这是一份山西省大同市2024-2025学年九上数学开学复习检测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map