山西省运城市新东康中学2024-2025学年数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列调查中,适合采用普查的是 ( )
A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误
C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识
2、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为18cm,AC的长6cm,则AD的长为( )
A.13cmB.12cmC.5cmD.8cm
3、(4分)为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知,,,则的度数是
A.B.C.D.
4、(4分)如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是( )
A.B.C.D.
5、(4分)张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为( )
A.B.C.D.
6、(4分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
A.平均数B.中位数C.众数D.方差
7、(4分)下列分式中,无论取何值,分式总有意义的是( )
A.B.C.D.
8、(4分)如图,中,平分,则等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.
10、(4分)如图,在中,点D、E分别是AB、AC的中点,连接BE,若,,,则的周长是_________度.
11、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
12、(4分)已知一次函数的图像如图所示,当x< 2时,y的取值范围是________.
13、(4分)平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,然后从的范围内选取一个合适的整数作为的值代入求值.
15、(8分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形( )
A.1个B.2个C.3个D.4个
16、(8分)如图,已知各顶点的坐标分别为,,.
(1)画出以点B为旋转中心,按顺时针方向旋转后得到的;
(2)将先向右平移5个单位长度,再向上平移3个单位长度,得到.
①在图中画出,并写出点A的对应点的坐标;
②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
17、(10分)如图,直线l1交x轴于A(3,0),交y轴于B(0,﹣2)
(1)求直线l1的表达式;
(2)将l1向上平移到C(0,3),得到直线l2,写出l2的表达式;
(3)过点A作直线l3⊥x轴,交l2于点D,求四边形ABCD的面积.
18、(10分)如图,平行四边形ABCD的对角线AC,BD交于点O,过点B作BP∥AC,过点C作CP∥BD,BP与CP相交于点P.
(1)判断四边形BPCO的形状,并说明理由;
(2)若将平行四边形ABCD改为菱形ABCD,其他条件不变,得到的四边形BPCO是什么四边形,并说明理由;
(3)若得到的是正方形BPCO,则四边形ABCD是 .(选填平行四边形、矩形、菱形、正方形中你认为正确的一个)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.
20、(4分)已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.
21、(4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
22、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
23、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
25、(10分)用适当的方法解一元二次方程:x2+4x+3=1.
26、(12分)解方程:
(1);
(2)(x﹣2)2=2x﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:根据抽样调查和全面调查的意义解答即可.
详解: A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;
B. 调查某本书中的印刷错误比较重要,宜采用普查;
C. 调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;
D. 调查公民保护环境的意识工作量比较大,宜采用抽样调查;
故选B.
点睛: 本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形,根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=18-AB,然后根据勾股定理即可求得.
【详解】
∵D、E分别是AB、AC的中点,F是BC延长线上的一点,
∴ED是Rt△ABC的中位线,
∴ED∥FC.BC=2DE,
又 EF∥DC,
∴四边形CDEF是平行四边形;
∴DC=EF,
∵DC是Rt△ABC斜边AB上的中线,
∴AB=2DC,
∴四边形DCFE的周长=AB+BC,
∵四边形DCFE的周长为18cm,AC的长6cm,
∴BC=18﹣AB,
∵在Rt△ABC中,∠ACB=90°,
∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,
解得:AB=10cm,
∴AD=5cm,
故选C.
本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
3、A
【解析】
直接利用平行线的性质得出,进而利用三角形的外角得出答案.
【详解】
如图所示:延长DC交AE于点F,
,,,
,
.
故选A.
本题考查了平行线的性质、三角形外角的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.
4、A
【解析】
求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.
【详解】
把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,
∴直线y=x,与反比例函数y=,
,解得:,
∴A(-3,-5)
故选:A.
考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.
5、A
【解析】
设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.
【详解】
设张老师骑自行车的速度是x米/分,由题意得:
,
故选:A.
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.
6、B
【解析】
由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
【详解】
11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
7、A
【解析】
根据分式有意义的条件是分母不等于零判断.
【详解】
解:A、∵a2≥0,
∴a2+1>0,
∴总有意义;
B、当a=−时,2a+1=0,无意义;
C、当a=±1时,a2−1=0,无意义;
D、当a=0时,无意义;无意义;
故选:A.
本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.
8、B
【解析】
根据平行四边形的性质和角平分线的性质求解.
【详解】
解:在▱ABCD中,
∵DC∥AB,
∴∠AED=∠BAE.
∵AE平分∠DAB,
∴∠DAE=∠BAE,
∴∠DAE=∠DEA,
∵∠DEA=40°,
∴∠D=180°-40°-40°=100°,
故选:B.
本题利用了两直线平行,同旁内角互补,内错角相等和角的平分线的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解:设CD=x,
根据C′D∥BC,且有C′D=EC,
可得四边形C′DCE是菱形;
即Rt△BC′E中,
AC==10,
EB=x;
故可得BC=x+x =8;
解得x=.
10、26
【解析】
由题意可知,DE为的中位线,依据中位线定理可求出BC的长,因为,故BE=BC,而EC=AE,此题得解.
【详解】
解:点D、E分别是AB、AC的中点
DE为的中位线,
又
故答案为:26
本题考查了中位线定理、等角对等边,熟练利用这两点求线段长是解题的关键.
11、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
12、y <1
【解析】试题解析∵一次函数y=kx+b(k≠1)与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为(-,1).
13、22或1.
【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当BE=3时,CE=5,AB=3,
则周长为22;
②当BE=5时,CE=3,AB=5,
则周长为1,
故答案为:22或1.
本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.
三、解答题(本大题共5个小题,共48分)
14、,2.
【解析】
分析:首先对括号内的式子进行通分相减,把除法转化为乘法运算.
本题解析:原式=
=
∵ ,且 x为整数 ,
∴若使分式有意义, 只能取和1.
当x =1时,原式=2.
本题考查了分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.
15、C
【解析】
①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,
②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.
③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.
【详解】
①由四边形ABCD是正方形和折叠性知,
∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,
∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,
故①正确,
②由四边形ABCD是正方形和折叠性得出,
∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,
∵∠ABF=45°,
∴∠ABF=∠DFG,
∴AB∥GF,
又∵∠BAC=∠BEF=45°,
∴EF∥AC,
∴四边形AEFG是平行四边形,
∴四边形AEFG是菱形.
∵在Rt△GFO中,GF=OG,
在Rt△BFE中,BE=EF=GF,
∴BE=2OG,
故②④正确.
③由四边形ABCD是正方形和折叠性知,
AD=FD,AG=FG,DG=DG,
在△ADG和△FDG中,
,
∴△ADG≌△FDG(SSS),
∴S△AGD=S△FDG≠S△OGD
故③错误.
正确的有①②④,
故选C.
本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.
16、(1)详见解析;(2)①图详见解析,A2(2,-1);②由A到A2的方向,平移的距离是个单位长度.
【解析】
(1)根据旋转的性质即可作图;(2)①根据平移的性质画出图形即可;②连接A A2,根据勾股定理求出A A2的长,进而可得出结论.
【详解】
(1)如图所示,即为所求;
(2)①如图所示,即为所求,A2(2,-1);
②连接AA2,由勾股定理求得AA2= ,
∴如果将看成是由经过一次平移得到的,那么这一平移的平移方向是由A到A2的方向,平移的距离是个单位长度.
本题考查的是作图-旋转变换及平移变换,熟知图形平移不变性的性质是解答第(2)问的关键.
17、(1)直线l1的表达式为:y=x﹣2;(2)直线l2的表达式为:y=x+3;(3)四边形ABCD的面积=1.
【解析】
(1)利用待定系数法求直线l1 的表达式
(2)根据一次函数沿着y轴向上平移的规律求解
(3)根据题意可知四边形为平行四边形,又各点的坐标,可直接求解
【详解】
(1)设直线l1的表达式为:y=kx+b,
由题意可得: ,
解得: ,
所以,直线l1的表达式为:y= x﹣2;
(2)将l1向上平移到C(0,3)可知,向上平移了5个单位长度,由几何变换可得:直线l2的表达式为:y= x﹣2+5=x+3;
(3)根据题意可知AB∥CD,CB∥DA,可得四边形ABCD为平行四边形
∵已知B(0,﹣2)C(0,3)A(3,0)
∴BC=5,OA=3,
∴四边形ABCD的面积=5×3=1.
此题考查了待定系数法求二次函数解析式,一次函数图形与几何变换,平行四边形的面积,解题关键在于利用待定系数法求出k,b的值
18、(1)四边形BPCO为平行四边形;(2)四边形BPCO为矩形;(3)四边形ABCD是正方形
【解析】
试题分析:(1)根据两组对边互相平行,即可得出四边形BPCO为平行四边形;
(2)根据菱形的对角线互相垂直,即可得出∠BOC=90°,结合(1)结论,即可得出四边形BPCO为矩形;
(3)根据正方形的性质可得出OB=OC,且OB⊥OC,再根据平行四边形的性质可得出OD=OB,OA=OC,进而得出AC=BD,再由AC⊥BD,即可得出四边形ABCD是正方形.
解:(1)四边形BPCO为平行四边形,理由如下:
∵BP∥AC,CP∥BD,
∴四边形BPCO为平行四边形.
(2)四边形BPCO为矩形,理由如下:
∵四边形ABCD为菱形,
∴AC⊥BD,则∠BOC=90°,
由(1)得四边形BPCO为平行四边形,
∴四边形BPCO为矩形.
(3)四边形ABCD是正方形,理由如下:
∵四边形BPCO是正方形,
∴OB=OC,且OB⊥OC.
又∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∴AC=BD,
又∵AC⊥BD,
∴四边形ABCD是正方形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.
【详解】
解:根据题意知,,
则,
.
故答案为.
本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.
20、0.26
【解析】
首先根据平均数算出x的值,然后利用方差的公式进行计算.
【详解】
解得:x=3
故方差为0.26
本题考查数据方差的计算,务必记住方差计算公式为:
21、1
【解析】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.
【详解】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.
由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.
∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.
故答案为:1.
本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.
22、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
23、
【解析】
由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
故答案为
二、解答题(本大题共3个小题,共30分)
24、(1)1000;(2)y=300x﹣5000;(3)40
【解析】
根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.
【详解】
(1)第20天的总用水量为1000米3
当0<x<20时,设y=mx ∵函数图象经过点(20,1000),(30,4000) ∴m=50
y与x之间的函数关系式为:y=50x
当x≥20时,设y=kx+b ∵函数图象经过点(20,1000),(30,4000)
∴解得∴y与x之间的函数关系式为:y=300x﹣5000
(3)当y=7000时, 有7000=300x﹣5000,解得x=40
考点:一次函数的性质
25、x2=-3,x2=-2
【解析】
利用因式分解法解方程.
【详解】
解:(x+3)(x+2)=2,
x+3=2或x+2=2,
所以x2=-3,x2=-2.
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
26、(1)原方程无解;(2),.
【解析】
(1)观察可得方程最简公分母为(x+1)(x-1),去分母,转化为整式方程求解,结果要检验.
【详解】
(1)去分母得:,
整理得,
解得x=1,
检验知:x=1是增根,原方程无解;
(2) 方程整理得:,
分解因式得:,即(x﹣2)(x﹣1)=0,
可得x﹣2=0或x﹣1=0,
解得:,.
此题考查了解分式方程,以及解一元二次方程,熟练掌握运算法则是解本题的关键.
题号
一
二
三
四
五
总分
得分
2025届山西省运城市运康中学九上数学开学监测模拟试题【含答案】: 这是一份2025届山西省运城市运康中学九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山西省运城市万荣县九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年山西省运城市万荣县九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山西省运城市新东康中学数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山西省运城市新东康中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。