![山东省枣庄市第四十一中学2025届九年级数学第一学期开学经典试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16288294/0-1729812376872/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省枣庄市第四十一中学2025届九年级数学第一学期开学经典试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16288294/0-1729812376942/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省枣庄市第四十一中学2025届九年级数学第一学期开学经典试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16288294/0-1729812376984/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省枣庄市第四十一中学2025届九年级数学第一学期开学经典试题【含答案】
展开这是一份山东省枣庄市第四十一中学2025届九年级数学第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则的值为( )
A.B.C.D.
2、(4分)使 有意义的a的取值范围为( )
A.a≥1B.a>1C.a≥﹣1D.a>﹣1
3、(4分)已知点都在反比例函数的图象上,则与的大小关系为( )
A.B.C.D.无法确定
4、(4分)如图是某件商晶四天内的进价与售价的折线统计图.那么售出每件这种商品利润最大的是( )
A.第一天B.第二天C.第三天D.第四天
5、(4分)关于2、6、1、10、6的这组数据,下列说法正确的是( )
A.这组数据的众数是6B.这组数据的中位数是1
C.这组数据的平均数是6D.这组数据的方差是10
6、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
7、(4分)对于反比例函数y=-的图象,下列说法不正确的是( )
A.经过点(1,-4)B.在第二、四象限C.y随x的增大而增大D.成中心对称
8、(4分)若,是函数图象上的两点,当时,下列结论正确的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是_____.
10、(4分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.
11、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.
12、(4分)如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.
13、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)
三、解答题(本大题共5个小题,共48分)
14、(12分)为深入践行总书记提出的“绿水青山就是金山银山”的重要理念,某学校积极响应号召,进行校园绿化,计划购进、两种树苗共30棵,已知种树苗每棵80元,种树苗每棵50元.设购买种树苗棵,购买两种树苗所需费用为元
(1)求与的函数关系式.
(2)若购买种树苗的数量不少于种树苗数量的2倍,请给出一种费用最少的购买方案,并求出该方案所需的费用.
15、(8分)如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.
(1)求A,B两点的坐标;
(2)求△BOC的面积;
(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.
①当OA=3MN时,求t的值;
②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.
16、(8分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形
17、(10分)如图所示的方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.在图中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形.
18、(10分) “五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
20、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
21、(4分)命题“在中,如果,那么是等边三角形”的逆命题是_____.
22、(4分)如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.
23、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)现有两家可以选择的快递公司的收费方式如下.
甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.
乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为,.
(1)分别写出 和与x的函数表达式(并写出x的取值范围);
(2)图中给出了与x的函数图象,请在图中画出(1)中与x的函数图象(要求列表,描点).
25、(10分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
26、(12分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接根据平行线分线段成比例定理求解.
【详解】
解:∵a∥b∥c,
∴.
故选:A.
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.
2、C
【解析】
根据二次根式有意义的条件:被开方数是非负数列不等式,解之即可得出答案.
【详解】
∵ 有意义,
∴,
解得a≥﹣1.
故选C.
本题考查了二次根式有意义的条件.利用二次根式定义中的限制性条件:被开方数是非负数列出不等式是解题的关键.
3、B
【解析】
分析:根据反比例函数的系数k的取值范围,判断出函数的图像,由图像的性质可得解.
详解:∵反比例函数
∴函数的图像在一三象限,在每一个象限,y随x增大而减小
∵-3<-1
∴y1<y2.
故选B.
点睛:此题主要考查了反比例函数的图像与性质,关键是利用反比例函数的系数k确定函数的图像与性质.
4、B
【解析】
根据利润=售价-进价和图象中给出的信息即可得到结论.
【详解】
解:由图象中的信息可知,
利润=售价-进价,利润最大的天数是第二天.
故选:B.
本题考查折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.
5、A
【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.
【详解】
数据由小到大排列为1,2,6,6,10,
它的平均数为(1+2+6+6+10)=5,
数据的中位数为6,众数为6,
数据的方差= [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.
故选A.
考点:方差;算术平均数;中位数;众数.
6、D
【解析】
分析:根据一元二次方程根的判别式
进行计算即可.
详解:根据一元二次方程一元二次方程有两个实数根,
解得:,
根据二次项系数 可得:
故选D.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
7、C
【解析】
根据反比例函数的性质用排除法解答.
【详解】
A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;
B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;
C、在同一象限内,y随x的增大而增大,故C选项不正确;
D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.
故选:C.
本题考查了反比例函数y=(k≠0)的性质:
①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.
8、A
【解析】
把点P1(x1,y1),P1(x1,y1)代入得,,则.
∵x1>x1>0,
∴,,,
即0<y1<y1.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>2
【解析】
根据一次函数的性质得出y随x的增大而增大,当x>2时,y>1,即可求出答案.
【详解】
解:∵直线y=kx+b(k>1)与x轴的交点为(2,1),
∴y随x的增大而增大,
当x>2时,y>1,
即kx+b>1.
故答案为x>2.
本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
10、1
【解析】
要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
【详解】
解:将长方体展开,连接A、B′,
∵AA′=1+3+1+3=8(cm),A′B′=6cm,
根据两点之间线段最短,AB′==1cm.
故答案为1.
考点:平面展开-最短路径问题.
11、1.
【解析】
根据菱形的性质,菱形的面积=对角线乘积的一半.
【详解】
解:菱形的面积是:.
故答案为1.
本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式.
12、
【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.
【详解】
解:∵AB⊥OA
∴∠OAB=90°,
∵OA=3、AB=2,
则数轴上表示点C的数为
故答案为:
本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.
13、①②③④
【解析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.
【详解】
解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,
∴AB=AD=AF,
在△ABG与△AFG中,;
△ABG≌△AFG(SAS);
②正确,
∵由①得△ABG≌△AFG,
又∵折叠的性质,△ADE≌△AFE,
∴∠BAG =∠FAG,∠DAE=∠EAF,
∴∠EAG=∠FAG+∠EAF=90°×=45°;
③正确,
∵EF=DE=CD=2,
设BG=FG=x,则CG=6-x,
在直角△ECG中,
根据勾股定理,得(6-x)2+42=(x+2)2,
解得x=3,
∴BG=3=6-3=GC;
④正确,
∵CG=BG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF,
又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)购买种树苗20棵,种树苗10棵费用最少,所需费用为2100元
【解析】
(1)根据总费用=购买A种树苗的费用+购买B种树苗的费用列出关系式即可;
(2)根据一次函数的增减性结合x的取值范围即可解答.
【详解】
解:(1);
(2)由题意得:,
解得:,
中,
随的增大而增大
时,有最小值,
最小.
此时,.
答:购买种树苗20棵,种树苗10棵费用最少,所需费用为2100元.
本题考查了一次函数的实际应用,根据实际问题列出关系式并运用函数性质求解是解题关键.
15、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=或;②t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.
【解析】
(1)利用待定系数法即可解决问题;
(2)构建方程组确定点C坐标即可解决问题;
(3)根据绝对值方程即可解决问题;
(4)分两种情形讨论:当OC为菱形的边时,可得Q1 Q2Q4(4,0);当OC为菱形的对角线时,Q3(2,0);
【详解】
(1)对于直线,令x=0得到y=3,令y=0,得到x=6,
A(6,0)B(0,3).
(2)由解得 ,
∴C(2,2),
∴
(3)①∵
∴
∵OA=3MN,
∴
解得t=或
②如图3中,由题意
当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);
当OC为菱形的对角线时,Q3(2,0),
∴t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.
本题考查一次函数综合题、三角形的面积、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.
16、见解析
【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.
【详解】
证明:∵ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠BAF=∠DCE,
又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,
所以在△ABF和△DCE中,
,
∴△ABF≌△CDE(SAS),
∴BF=DE,
同理可证:△ADF≌△CBE(SAS),
∴DF=BE,
∴四边形BFDE是平行四边形.
本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.
17、见解析
【解析】
本题是直角三角形定义的应用问题,如果三角形有一个内角是直角,那么这个三角形就是直角三角形.根据三角形内角和定理,三角形中是直角的内角最多只有一个.从图中可以看出线段AB没有经过任何一个小正方形的边,因此从点A、B处构造直角比较困难;所以考虑在点C处构造直角,通过点A和点B分别作水平和竖直的直线,则直线交点就是点C的位置.
【详解】
过点A作竖直的直线,过点B作水平的直线,交点处就是点C,如图①;或者过点A作水平的直线,过点B作竖直的直线,交点处就是点C,如图②.

本题考查直角三角形的定义、勾股定理和勾股定理的逆定理,解答的关键是掌握直角三角形的定义、勾股定理和勾股定理的逆定理.
18、(1)30(2)y=80x﹣30(1.5≤x≤2.5);(3)他们出发2小时,离目的地还有40千米
【解析】
(1)先设函数解析式,再根据点坐标求解析式,带入数值求解即可(2)根据点坐标求AB段的函数解析式(3)根据题意将x=2带入AB段解析式中求值即可.
【详解】
解:(1)设OA段图象的函数表达式为y=kx.
∵当x=1.5时,y=90,
∴1.5k=90,
∴k=60.
∴y=60x(0≤x≤1.5),
∴当x=0.5时,y=60×0.5=30.
故他们出发半小时时,离家30千米;
(2)设AB段图象的函数表达式为y=k′x+b.
∵A(1.5,90),B(2.5,170)在AB上,
∴①1.5k′+b=90 ② 2.5k′+b=170
解得k′=80 b=-30
∴y=80x-30(1.5≤x≤2.5);
(3)∵当x=2时,y=80×2-30=130,
∴170-130=40.
故他们出发2小时时,离目的地还有40千米.
此题重点考察学生对一次函数的实际应用能力,利用待定系数法来确定一次函数的表达式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
20、-1
【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
21、如果是等边三角形,那么.
【解析】
把原命题的题设与结论进行交换即可.
【详解】
“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.
故答案为:如果是等边三角形,那么.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
22、1
【解析】
由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=9cm,CD=AB=6cm,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠ADE,
∴∠EDC=∠DEC,
∴CE=CD=6cm,
∴BE=BC-EC=1cm,
故答案为:1.
本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.
23、或
【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
【详解】
由题可得,
可得,
根据△ABC是等腰直角三角形可得:
,
解得,
当k=1时,点C的坐标为,
当k=-1时,点C的坐标为,
故答案为或.
本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
二、解答题(本大题共3个小题,共30分)
24、(1),;
(2)
图象见解析
【解析】
(1)根据题目中甲乙公司不同的收费方式结合数量关系,找出和与x之间的关系;
(2)根据的方程进行列表,依次描点连线即可得出函数图象.
【详解】
解:(1)设物品的重量为x千克
由题意可得;;
(2)列表为
函数图象如下:
故本题最后答案为:(1),;
(2)
图象如上所示.
(1)本题主要考查了一次函数的应用,解题的关键是根据不同的x的范围列出不同的解析式,其中不要忽略本题为实际问题,即x的取值范围为正;
(2)本题主要考查了函数图象的画法,明确画函数图象的步骤是解题的关键.
25、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.
【解析】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;
(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.
【详解】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,
2(1+x)2=2.88,
解得,x1=0.2,x2=﹣2.2(舍去),
答:这两年我县投入城市公园建设经费的年平均增长率是0.2;
(2)2.88(1+0.2)=3.456(亿元),
答:2019年我县城市公园建设经费约为3.456亿元.
本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.
26、现在每天加固长度为150米
【解析】
设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=x米,可由题意列出一个等量关系:完成此段加固工程所需天数将比原计划缩短5天,列出方程,求出结果.
【详解】
解:设原计划每天加固长度为x米,则现在每天加固长度为1.5x米,
,解得,经检验,是此分式方程的解.
本题考查分式方程的运用,熟练掌握计算法则是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
_____
_____
…
y
…
_____
_____
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
相关试卷
这是一份山东省枣庄市枣庄市第四十一中学2024年九年级数学第一学期开学预测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省枣庄市第四十一中学九上数学开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省枣庄市中学区永安乡黄庄中学九年级数学第一学期开学联考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。